January 22, 2019 January 22, 2019 10:00 PM PST 11:00 PM PST In case you didn’t notice, we recently held the 1st ever GMAT game show and it was awesome! See who won a full GMAT course, and register to the next one. January 26, 2019 January 26, 2019 07:00 AM PST 09:00 AM PST Attend this webinar to learn how to leverage Meaning and Logic to solve the most challenging Sentence Correction Questions.
Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 52402

If a and b are positive integers, and (2^3)(3^4)(5^7) = a^3b, how many
[#permalink]
Show Tags
28 Oct 2018, 23:06
Question Stats:
26% (01:50) correct 74% (01:25) wrong based on 123 sessions
HideShow timer Statistics



Manager
Joined: 13 Jan 2018
Posts: 181
Location: India
GPA: 4

Re: If a and b are positive integers, and (2^3)(3^4)(5^7) = a^3b, how many
[#permalink]
Show Tags
28 Oct 2018, 23:53
Total no. of possible values is 12. 1) \(2^3 (3^4 * 5^7)\) 2) \(3^3 (2^3 * 3 * 5^7)\) 3) \(5^3 (2^3 * 3^4 * 5^4)\) 4) \((5^2)^3 (2^3 * 3^4 * 5)\) 5) \((2*3)^3 (3 * 5^7)\) 6) \((2*5)^3 (3^4 * 5^4)\) 7) \((3*5)^3 (2^3 * 3 * 5^4)\) 8) \((2*{5^2})^3 (3^4 * 5)\) 9) \((3*{5^2})^3 (2^3 * 3 * 5)\) 10) \((2*3*5)^3 (3 * 5^4)\) 11) \(1^3 (2^3 * 3^4 * 5^7)\) 12) \((2*3*{5^2})^3 (3 * 5)\) OPTION : E
_________________
____________________________ Regards,
Chaitanya +1 Kudos if you like my explanation!!!



Intern
Joined: 23 Apr 2018
Posts: 16

Re: If a and b are positive integers, and (2^3)(3^4)(5^7) = a^3b, how many
[#permalink]
Show Tags
05 Nov 2018, 07:20
Sir, how did you do that?
Posted from my mobile device



Manager
Joined: 13 Jan 2018
Posts: 181
Location: India
GPA: 4

Re: If a and b are positive integers, and (2^3)(3^4)(5^7) = a^3b, how many
[#permalink]
Show Tags
05 Nov 2018, 07:59
For me it's intutive. I have past experiences on how to respond for these kind of problems. I don't have any strategy to tell. But only practise can get you arrive solutions for these questions. Posted from my mobile device
_________________
____________________________ Regards,
Chaitanya +1 Kudos if you like my explanation!!!



Manager
Joined: 21 Jun 2017
Posts: 212
Concentration: Finance, Economics
WE: Corporate Finance (Commercial Banking)

Re: If a and b are positive integers, and (2^3)(3^4)(5^7) = a^3b, how many
[#permalink]
Show Tags
05 Nov 2018, 08:09
Any other way than actually calculating by brute force ? VeritasKarishma GMATinsight
_________________
Even if it takes me 30 attempts, I am determined enough to score 740+ in my 31st attempt. This is it, this is what I have been waiting for, now is the time to get up and fight, for my life is 100% my responsibility.
Dil ye Ziddi hai !!!



Orion Representative
Joined: 26 Jul 2010
Posts: 343

Re: If a and b are positive integers, and (2^3)(3^4)(5^7) = a^3b, how many
[#permalink]
Show Tags
05 Nov 2018, 17:18
It's slightly bruteforce but I'd look at it this way: Of the exponents given, you can break out four sets of "prime base to the third"  2^3, 3^3 (leaving 3^1 behind), 5^3, and 5^3 (since you have 5^7, you have two sets of 5^3 you can use) Then there are four types of combinations you can use as your a^3: one of the four (e.g. 2^2), two of the four (e.g. 2^2 * 5^3), three of the four (e.g. 2^2 * 3^3 * 5^3), or all four. Then you just need to remember that the 5^3s repeat, so you have the options of: All four > one way to do it Three of the four > 2, 3, and 5; 2, 5, and 5; and 3, 5, and 5 > three ways to do it Two of the four > 2 and 3; 2 and 5; 3 and 5; 5 and 5 > four ways to do it One of the four > the 5s repeat, so you could use 2, 3, and 5 > three ways to do it That gets you to 11 and you know they're all valid, so you can use the answer choices to say that you have to be missing one somewhere and pick 12. *Or* you can have the presence of mind to realize that 1^3 works as a^3 and the rest could all be part of b. Honestly...I don't think I'd see that up front but the answer choices here would definitely guide me to that, or if 11 and 12 were each options hopefully I'd do that "hey am I missing one?" doublecheck. This is kind of bruteforce, but I think at least organized enough that it's replicable.
_________________
Brian
Curriculum Developer, Instructor, and Host of Veritas Prep On Demand
Save $100 on live Veritas Prep GMAT Courses and Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.
Veritas Prep Reviews



CEO
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2726
Location: India
GMAT: INSIGHT
WE: Education (Education)

Re: If a and b are positive integers, and (2^3)(3^4)(5^7) = a^3b, how many
[#permalink]
Show Tags
06 Nov 2018, 06:25
Quote: If a and b are positive integers, and \((2^3)(3^4)(5^7) = a^3b\), how many different possible values of b are there?
A. 2 B. 4 C. 6 D. 9 E. 12 ShankSouljaBoibasically we need to understand that \((2^3)(3^4)(5^7) = a^3b\) is expecting from us to separate a cube from the rest of the number so we should be able to write the left part of the equation in the form that is represented on the right side of the equation Let, \(2^3 = p\) and \(3^3 = q\) and \(5^3 = r\) So we have \(p*q*r^2\) to represent \(a^3\) Total factors of \(p*q*r^2\) = (1+1)*(1+1)*(2+1) = 12 i.e. there are 12 ways to represent \(a^3\) and the remaining part of the expression on left represents \(b\) hence, 12 cases Answer: Option E
_________________
Prosper!!! GMATinsight Bhoopendra Singh and Dr.Sushma Jha email: info@GMATinsight.com I Call us : +919999687183 / 9891333772 Online OneonOne Skype based classes and Classroom Coaching in South and West Delhi http://www.GMATinsight.com/testimonials.html
ACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION



Manager
Joined: 21 Jun 2017
Posts: 212
Concentration: Finance, Economics
WE: Corporate Finance (Commercial Banking)

Re: If a and b are positive integers, and (2^3)(3^4)(5^7) = a^3b, how many
[#permalink]
Show Tags
06 Nov 2018, 23:11
GMATinsight wrote: Quote: If a and b are positive integers, and \((2^3)(3^4)(5^7) = a^3b\), how many different possible values of b are there?
A. 2 B. 4 C. 6 D. 9 E. 12 ShankSouljaBoibasically we need to understand that \((2^3)(3^4)(5^7) = a^3b\) is expecting from us to separate a cube from the rest of the number so we should be able to write the left part of the equation in the form that is represented on the right side of the equation Let, \(2^3 = p\) and \(3^3 = q\) and \(5^3 = r\) So we have \(p*q*r^2\) to represent \(a^3\) Total factors of \(p*q*r^2\) = (1+1)*(1+1)*(2+1) = 12 i.e. there are 12 ways to represent \(a^3\) and the remaining part of the expression on left represents \(b\) hence, 12 cases Answer: Option E wow
_________________
Even if it takes me 30 attempts, I am determined enough to score 740+ in my 31st attempt. This is it, this is what I have been waiting for, now is the time to get up and fight, for my life is 100% my responsibility.
Dil ye Ziddi hai !!!



Target Test Prep Representative
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 4612
Location: United States (CA)

Re: If a and b are positive integers, and (2^3)(3^4)(5^7) = a^3b, how many
[#permalink]
Show Tags
07 Nov 2018, 17:59
Bunuel wrote: If a and b are positive integers, and \((2^3)(3^4)(5^7) = a^3b\), how many different possible values of b are there?
A. 2 B. 4 C. 6 D. 9 E. 12 To determine possible values of b, we have to explore all the possible values of a. We see that a can be of the form 2^r x 3^s x 5^t, where r is 0 or 1, s is 0 or 1 and t is 0, 1, or 2, so that b is still an integer. Since the values of r and s have 2 choices each and the value of t has 3 choices, there are a total of 2 x 2 x 3 = 12 different values for a, and, hence, there are also a total of 12 different values for b. Answer: E
_________________
Scott WoodburyStewart
Founder and CEO
GMAT Quant SelfStudy Course
500+ lessons 3000+ practice problems 800+ HD solutions



Intern
Joined: 22 Aug 2018
Posts: 11

Re: If a and b are positive integers, and (2^3)(3^4)(5^7) = a^3b, how many
[#permalink]
Show Tags
18 Nov 2018, 03:14
I would suggest the below approach, not too much theory, not too much brute force..
Keep in mind that both a and b are positive and integers, therefore if we move a to the denominator it gives us:
\(\frac{(2^3)(3^4)(5^7)}{(a^3)}\) = b
so we need to find those values of a for which b remains an integer:
(1) It's easy to find that a can take values like 1, 2, 3, 5 and \(5^2\)
(2) a can take also values that result from the multiplications of the previous values (\(2*3\)), (\(2*5\)), (\(3*5\)) and (\(2*3*5\)) since at the numerator we have a multiplication of all three elements to the power of, at least, 3
(3) continuing the multiplication approach, a can also take values (\(5^2\)\(*3\)), (\(5^2\)\(*2\)) and (\(5^2\)\(*3*2\)), since at the numerator the number 5 has power 7
Total number of values that a can take is 12
E




Re: If a and b are positive integers, and (2^3)(3^4)(5^7) = a^3b, how many &nbs
[#permalink]
18 Nov 2018, 03:14






