Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If r is not equal to 0, is r^2/|r| < 1? (1) r > -1 (2) [#permalink]

Show Tags

27 Jun 2010, 12:43

2

This post received KUDOS

7

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

35% (medium)

Question Stats:

67% (01:01) correct
33% (01:17) wrong based on 595 sessions

HideShow timer Statistics

If r is not equal to 0, is r^2/|r| < 1?

(1) r > -1

(2) r < 1

AS far as i know the option B looks sufficient. Since, r<1, it can take values that are negative like -2 or fraction values like 1/2. in either case the value of r^2/ |R| is <1. The OA suggests other wise.

AS far as i know the option B looks sufficient. Since, r<1, it can take values that are negative like -2 or fraction values like 1/2. in either case the value of r^2/ |R| is <1. The OA suggests other wise.

Is \(\frac{r^2}{|r|}<1\)? --> reduce by \(|r|\) --> is \(|r|<1\)? or is \(-1<r<1\)?

Two statements together give us the sufficient info.

Answer: C.

You made a mistake in calculation for statement (2). Given \(r<1\): for \(-1<r<1\), for example if \(r=-\frac{1}{2}\), then \(\frac{(-\frac{1}{2})^2}{|-\frac{1}{2}|}=\frac{1}{2}<1\) but if \(r\leq{-1}\), for example if \(r=-2\), then \(\frac{(-2)^2}{|-2|}=2>1\).

The first thing to note is that the question isn't testing sign. They tell us that r is not 0, and by definition, both r^2 and |r| are positive. So neither of these statements would be more useful than the other alone.

Since pos/pos = pos, we are ok doing a little creative manipulation of r^2/|r| = |(r*r)/r| = |r|. This move (putting the absolute value sign around the whole thing) isn't a rule to memorize or anything. I'm just ignoring sign temporarily, cancelling, then just assuring the positive result I need with the bars.

This question is really asking "Is r a fraction, or is it larger than 1 (in absolute value)?"
_________________

Emily Sledge | Manhattan GMAT Instructor | St. Louis

AS far as i know the option B looks sufficient. Since, r<1, it can take values that are negative like -2 or fraction values like 1/2. in either case the value of r^2/ |R| is <1. The OA suggests other wise.

Is \(\frac{r^2}{|r|}<1\)? --> reduce by \(|r|\) --> is \(|r|<1\)? or is \(-1<r<1\)?

Two statements together give us the sufficient info.

Answer: C.

You made a mistake in calculation for statement (2). Given \(r<1\): for \(-1<r<1\), for example if \(r=-\frac{1}{2}\), then \(\frac{(-\frac{1}{2})^2}{|-\frac{1}{2}|}=\frac{1}{2}<1\) but if \(r\leq{-1}\), for example if \(r=-2\), then \(\frac{(-2)^2}{|-2|}=2>1\).

Hope it's clear.

I guess i did make a mistake in the calc....my bad!!! thanks for the info bunuel!!!
_________________

AS far as i know the option B looks sufficient. Since, r<1, it can take values that are negative like -2 or fraction values like 1/2. in either case the value of r^2/ |R| is <1. The OA suggests other wise.

Is \(\frac{r^2}{|r|}<1\)? -->reduce by \(|r|\) --> is \(|r|<1\)? or is \(-1<r<1\)?

Two statements together give us the sufficient info.

Answer: C.

You made a mistake in calculation for statement (2). Given \(r<1\): for \(-1<r<1\), for example if \(r=-\frac{1}{2}\), then \(\frac{(-\frac{1}{2})^2}{|-\frac{1}{2}|}=\frac{1}{2}<1\) but if \(r\leq{-1}\), for example if \(r=-2\), then \(\frac{(-2)^2}{|-2|}=2>1\).

Hope it's clear.

How r^2/lrl reduce to lrl only ???
_________________

Bole So Nehal.. Sat Siri Akal.. Waheguru ji help me to get 700+ score !

AS far as i know the option B looks sufficient. Since, r<1, it can take values that are negative like -2 or fraction values like 1/2. in either case the value of r^2/ |R| is <1. The OA suggests other wise.

Is \(\frac{r^2}{|r|}<1\)? -->reduce by \(|r|\) --> is \(|r|<1\)? or is \(-1<r<1\)?

Two statements together give us the sufficient info.

Answer: C.

You made a mistake in calculation for statement (2). Given \(r<1\): for \(-1<r<1\), for example if \(r=-\frac{1}{2}\), then \(\frac{(-\frac{1}{2})^2}{|-\frac{1}{2}|}=\frac{1}{2}<1\) but if \(r\leq{-1}\), for example if \(r=-2\), then \(\frac{(-2)^2}{|-2|}=2>1\).

Re: If r is not equal to 0, is r^2/|r| < 1? (1) r > -1 (2) [#permalink]

Show Tags

06 Nov 2014, 01:36

kylexy wrote:

If r is not equal to 0, is r^2/|r| < 1?

(1) r > -1

(2) r < 1

AS far as i know the option B looks sufficient. Since, r<1, it can take values that are negative like -2 or fraction values like 1/2. in either case the value of r^2/ |R| is <1. The OA suggests other wise.

r^2/|r|<1 ---> r^2<|r|

Logically, the only way when any number squared is less than the same number not squared is when the number is between -1 and 1

S1. r>-1 only one part of interval, so INSUFFICIENT

S2. r<1 again, only one part of interval, INSUFFICIENT

If r is not equal to 0, is r^2/|r| < 1? (1) r > -1 (2) [#permalink]

Show Tags

29 Jan 2017, 03:47

kylexy wrote:

If r is not equal to 0, is \(\frac{r^{2}}{|r|} < 1\) ?

(1) \(r > -1\)

(2) \(r < 1\)

AS far as i know the option B looks sufficient. Since, \(r<1\), it can take values that are negative like \(-2\) or fraction values like \(\frac{1}{2}\) . in either case the value of \(\frac{r^2}{|r|}\) is \(<1\). The OA suggests other wise.

Since \(|r|\) is always positive, we can multiply both sides of the inequality by \(|r|\) and rephrase the question as: Is \(r^{2} < |r |\) ? The only way for this to be the case is if \(r\)is a nonzero fraction between \(-1\) and \(1\).

(1) INSUFFICIENT: This does not tell us whether \(r\) is between \(-1\) and \(1\). If \(r = - \frac{1}{2}\) , \(|r| = \frac{1}{2}\) and \(r^{2} = \frac{1}{4}\) , and the answer to the rephrased question is YES. However, if \(r = 4,\) , \(|r| = 4\)and \(r^{2} = 16\), and the answer to the question is NO.

(2) INSUFFICIENT: This does not tell us whether \(r\) is between \(-1\) and \(1\). If \(r = \frac{1}{2}\) , \(|r| = \frac{1}{2}\) ans \(r^{2} = \frac{1}{4}\) , and the answer to the rephrased question is YES. However, if \(r = -4\), \(|r| = 4\) and \(r^{2}=16\), and the answer to the question is NO.

(1) AND (2) SUFFICIENT: Together, the statements tell us that r is between \(-1\) and \(1\). The square of a proper fraction (positive or negative) will always be smaller than the absolute value of that proper fraction.

The correct answer is \(C\).
_________________

"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."