GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 17 Aug 2019, 14:31

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# In Jefferson School, 300 students study French or Spanish or

Author Message
TAGS:

### Hide Tags

Intern
Joined: 17 May 2012
Posts: 35
In Jefferson School, 300 students study French or Spanish or  [#permalink]

### Show Tags

08 Oct 2014, 11:35
Hi Bunuel,

It might seem as a stupid question and I will request you to bare with me. I seem to understand how you get this part
Quote:
Given: 300={French}+{Spanish}-{Both}

But how do you infer this
Quote:
{Spanish}-{Both}=100
and this
Quote:
{French}-{Both}=60
is beyond me. Shouldn't {French}-{Both} = 240? I don't know what I am missing; I really like the equation approach but I am missing a vital link to form the quoted equations. Thanks a million if you can help on this.
Math Expert
Joined: 02 Sep 2009
Posts: 57025
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

### Show Tags

11 Oct 2014, 13:35
1
aj0809 wrote:
Hi Bunuel,

It might seem as a stupid question and I will request you to bare with me. I seem to understand how you get this part
Quote:
Given: 300={French}+{Spanish}-{Both}

But how do you infer this
Quote:
{Spanish}-{Both}=100
and this
Quote:
{French}-{Both}=60
is beyond me. Shouldn't {French}-{Both} = 240? I don't know what I am missing; I really like the equation approach but I am missing a vital link to form the quoted equations. Thanks a million if you can help on this.

We are told that 100 of these students do not study French, so 100 students study Spanish only, which is {Spanish} - {Both}.
The same with {French} - {Both} = 60. 60 do not study Spanish, means that 60 students study French only, which is {French} - {Both}.

Theory on Overlapping Sets:
how-to-draw-a-venn-diagram-for-problems-98036.html

DS Overlapping Sets Problems to practice: search.php?search_id=tag&tag_id=45
PS Overlapping Sets Problems to practice: search.php?search_id=tag&tag_id=65
_________________
Intern
Joined: 23 Nov 2014
Posts: 21
Location: China
Concentration: Entrepreneurship, General Management
GMAT 1: 550 Q41 V25
GMAT 2: 680 Q47 V35
WE: General Management (Hospitality and Tourism)
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

### Show Tags

27 Dec 2014, 19:33
Bunuel wrote:
tom09b wrote:
I do not understand how we assume that Jefferson School has only 300 students. If this is not the total number then we cannot say anything from the statements, so answer is E. Am I right??

We are not assuming that. We are told that "in Jefferson School, 300 students study French or Spanish or both", there might be more students who study neither French nor Spanish. But this piece of information tells us that among these 300 students there is none who study neither French nor Spanish. So, 300={French}+{Spanish}-{Both}.

In Jefferson School, 300 students study French or Spanish or both. If 100 of these students do not study French, how many of these students study both French and Spanish?

Given: 300 = {French} + {Spanish} - {Both} and {Spanish} - {Both} = 100 --> 300 = {French} + 100 --> {French} = 200.
Question: {Both}=?

(1) Of the 300 students, 60 do not study Spanish --> {French} - {Both} = 60 --> 200 - {Both} = 60 --> {Both} = 140. Sufficient.

(2) A total of 240 of the students study Spanish --> {Spanish} = 240 --> 240 - {Both} = 100 ---> {Both} = 140. Sufficient.

Thanks Bunuel. Now its clear.This is an interesting problem because I assumed there would be some students who study neither. But I have learnt a new way to look at these problems and read carefully to understand the exact meaning.

Insanity: doing the same thing over and over again and expecting different results. - Holds True for Learning for GMAT
Intern
Joined: 17 May 2012
Posts: 35
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

### Show Tags

16 Mar 2015, 23:58
Hi All,

I found the Venn Diagram approach is the best way to solve this Q. For more details check out the below link:
http://www.gmatquantum.com/og13/138-dat ... ition.html

Thanks,
AJ
Manager
Joined: 09 Aug 2016
Posts: 63
In Jefferson School, 300 students study French or Spanish or  [#permalink]

### Show Tags

23 Sep 2016, 15:49
In general for two overlapping sets we have (For convenience I use S & F for Spanish and Frence):

Total = f + s + Both + Neither where s,f are the areas Ony Spanish or Only French i.e. if f = F - Both, s = S - Both

Total = (F-Both) + (S-Both) + Both + Neither.

For this question Neither = 0, s = 100 (or S-Both = 100) and Total = 300

(i) f = 60 (or F-Both = 60) . So the first equation becomes Total = 60 + 100 + Both = 300 hence Both = 300 - 160 = 140 Sufficient

(ii) S = 240. So S = s + Both Therefore by just replacing the values we have 240 = 100 + Both give Both = 140 Sufficient

Although under GMAT conditions all these equations are overkill and perhaps the best thing is just simple Venn.
Director
Status: Come! Fall in Love with Learning!
Joined: 05 Jan 2017
Posts: 539
Location: India
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

### Show Tags

23 Feb 2017, 05:50
Prompt analysis
No. of student learning french = f
No. of students learning spanish = s

Therefore 300 =f +s +f and s and s =100.

Superset
The value of fs will lie in the range of 0 to 200.

Translation
In order to find f and s, we need:
1# the value of f.
2# the exact value of f and s
3# any equation to find f and f and s.

Statement analysis

St 1: f =60. Therefore from the above equation, we can find f and s =140 .ANSWER.
St 2: s +f and s =240. f and s =140. ANSWER.

Option D
_________________
GMAT Mentors
GMATH Teacher
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 937
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

### Show Tags

12 Sep 2018, 14:20
ISBtarget wrote:
In Jefferson School, 300 students study French or Spanish or both. If 100 of these students do not study French, how many of these students study both French and Spanish?

(1) Of the 300 students, 60 do not study Spanish.
(2) A total of 240 of the students study Spanish.

$$? = {\text{French}} \cap {\text{Spanish}} = x\,\,\,\,\left( {{\text{see}}\,\,{\text{image}}\,\,{\text{attached}}} \right)$$

$$\left( 1 \right)\,\,\,300 = 60 + x + 100\,\,\,\,\, \Rightarrow \,\,\,\,x\,\,\,{\text{unique}}$$

$$\left( 2 \right)\,\,\,240 = x + 100\,\,\,\,\, \Rightarrow \,\,\,\,x\,\,\,{\text{unique}}$$

This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.
Attachments

12Set18_4r.gif [ 19.03 KiB | Viewed 397 times ]

_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
Manager
Joined: 09 May 2017
Posts: 178
Location: Iran (Islamic Republic of)
In Jefferson School, 300 students study French or Spanish or  [#permalink]

### Show Tags

22 Jun 2019, 23:06
HOW WE CAN FIND OUT WE DO NOT NEED NEITHER/NOR ? if question stem do not talk about neither /nor then we can conclude that we must not consider existence of neither nor ??!!!!
T=A+B+AB-NONE (NEITHER NOR)
_________________
behind your feelings there is nothing, but behind every principle is a promise. "Eric"
I used a lot of LSAT CR. At the same time it was important to switch back to GMAT CR before exam
because reasoning is different and you need to adjust your CR skills to GMAT .
Senior Manager
Joined: 09 Jun 2014
Posts: 342
Location: India
Concentration: General Management, Operations
In Jefferson School, 300 students study French or Spanish or  [#permalink]

### Show Tags

11 Jul 2019, 06:34

I have a confusion with the language of this question above .How do we interpret neither is Zero here since its not clearly stated in the question.

I came across another simple PS from official source.

Of the 65 cars on a car lot, 45 have air-conditioning, 30 have power windows, and 12 have both air-conditioning and power windows. How many of the cars on the lot have neither air-conditioning nor power windows? Here we have to find neither...a little obvious since asking the explicitly but if there was any other parameter asked it again would have been an issue.

Thanks
Intern
Joined: 15 Jul 2019
Posts: 12
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

### Show Tags

05 Aug 2019, 14:52
I am confused. I don't understand where in the problem it states that students must take a language. We are told that 60 students do not take French but that does not mean that they automatically take Spanish...What if they take no language at all?
Re: In Jefferson School, 300 students study French or Spanish or   [#permalink] 05 Aug 2019, 14:52

Go to page   Previous    1   2   [ 30 posts ]

Display posts from previous: Sort by