Join us for MBA Spotlight – The Top 20 MBA Fair      Schedule of Events | Register

It is currently 05 Jun 2020, 12:23

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

In Jefferson School, 300 students study French or Spanish or

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Manager
Manager
avatar
Joined: 24 Aug 2009
Posts: 132
In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post Updated on: 15 Feb 2012, 11:36
4
1
64
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

66% (01:45) correct 34% (02:01) wrong based on 1435 sessions

HideShow timer Statistics

In Jefferson School, 300 students study French or Spanish or both. If 100 of these students do not study French, how many of these students study both French and Spanish?

(1) Of the 300 students, 60 do not study Spanish.
(2) A total of 240 of the students study Spanish.

Originally posted by ISBtarget on 11 Dec 2009, 12:34.
Last edited by Bunuel on 15 Feb 2012, 11:36, edited 1 time in total.
Edited the question and added the OA
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 64314
In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 15 Feb 2012, 11:50
12
8
tom09b wrote:
I do not understand how we assume that Jefferson School has only 300 students. If this is not the total number then we cannot say anything from the statements, so answer is E. Am I right??


We are not assuming that. We are told that "in Jefferson School, 300 students study French or Spanish or both", there might be more students who study neither French nor Spanish. But this piece of information tells us that among these 300 students there is none who study neither French nor Spanish. So, 300={French}+{Spanish}-{Both}.

In Jefferson School, 300 students study French or Spanish or both. If 100 of these students do not study French, how many of these students study both French and Spanish?

Given: 300 = {French} + {Spanish} - {Both} and {Spanish} - {Both} = 100 --> 300 = {French} + 100 --> {French} = 200.
Question: {Both}=?

(1) Of the 300 students, 60 do not study Spanish --> {French} - {Both} = 60 --> 200 - {Both} = 60 --> {Both} = 140. Sufficient.

(2) A total of 240 of the students study Spanish --> {Spanish} = 240 --> 240 - {Both} = 100 ---> {Both} = 140. Sufficient.

Answer: D.
_________________
Most Helpful Community Reply
Intern
Intern
avatar
Joined: 16 Dec 2013
Posts: 22
Location: United States
Schools: Ross '17 (M)
GMAT 1: 660 Q42 V40
GMAT 2: 710 Q47 V42
WE: Military Officer (Military & Defense)
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 02 Jan 2014, 10:50
11
1
7
This problem can be solved using a table:

Step 1: Using the prompt, we can fill in total students, students who do not study French, students who study French, and students who don't study either French or Spanish.
Step 2: Both statements give us the same information: number of students who do and do not study spanish.
Step 3: Fill in the blanks.

View the file for a graphical depiction of this process.

I hope this helps.
Attachments

Screen Shot 2014-01-02 at 7.51.40 PM.png
Screen Shot 2014-01-02 at 7.51.40 PM.png [ 32.48 KiB | Viewed 26611 times ]

General Discussion
Manager
Manager
avatar
Joined: 29 Jul 2009
Posts: 126
Re: OG 12th edition - DS  [#permalink]

Show Tags

New post 11 Dec 2009, 18:05
1
1
1
Is the answer D, either statement is sufficient?

Given
Total students who who study S or F or both=300
Those who study S=200

(1) Of the 300 students, 60 do not study Spanish.
Those who study F = 300-60=240

240+200=440 students in F and S classes

Since only 300 students are in the school, the overlap is 440-300=140, who study both

====>sufficient

(2) A total of 240 of the students study Spanish.

240+200=440 students in F and S classes

Since only 300 students are in the school, the overlap is 440-300=140, who study both


====>sufficient
Intern
Intern
avatar
Joined: 13 Feb 2012
Posts: 14
WE: Other (Transportation)
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 15 Feb 2012, 11:26
I do not understand how we assume that Jefferson School has only 300 students. If this is not the total number then we cannot say anything from the statements, so answer is E. Am I right??
Intern
Intern
avatar
Joined: 13 Feb 2012
Posts: 14
WE: Other (Transportation)
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 15 Feb 2012, 11:53
Bunuel wrote:
tom09b wrote:
I do not understand how we assume that Jefferson School has only 300 students. If this is not the total number then we cannot say anything from the statements, so answer is E. Am I right??


We are not assuming that. We are told that "in Jefferson School, 300 students study French or Spanish or both", there might be more students who study neither French nor Spanish. But this piece of information tells us that among these 300 students there is none who study neither French nor Spanish. So, 300={French}+{Spanish}-{Both}.

In Jefferson School, 300 students study French or Spanish or both. If 100 of these students do not study French, how many of these students study both French and Spanish?

Given: 300={French}+{Spanish}-{Both} and {Spanish}-{Both}=100 --> 300={French}+100 --> {French}=200.
Question: {Both}=?

(1) Of the 300 students, 60 do not study Spanish --> {French}-{Both}=60 --> 200-{Both}=60 --> {Both}=140. Sufficient.

(2) A total of 240 of the students study Spanish --> {Spanish}=240 --> 240-{Both}=100 ---> {Both}=140. Sufficient.

Answer: D.


I should have paid more attention to If 100 of these students. Thanks again!
Manager
Manager
User avatar
Joined: 27 Jul 2011
Posts: 127
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 22 Sep 2012, 04:14
10
1
Please check the attachment for matrix approach ...which is actually easier than than the set approach

First one is for option A and second one is for option B

NS n NF = 0 as stated all of them either take Spanish of French
Attachments

matrix.png
matrix.png [ 8.79 KiB | Viewed 29764 times ]

Intern
Intern
avatar
Joined: 09 Sep 2013
Posts: 3
Location: United States
Concentration: General Management, Entrepreneurship
Schools: HBS '17, Wharton '17
WE: General Management (Real Estate)
GMAT ToolKit User
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 22 Jan 2014, 11:21
3
1
If you are making the matrix, you have to realize that No Spanish and No French = 0. That's the tricky part about the matrix.
Intern
Intern
avatar
Joined: 26 May 2013
Posts: 28
Location: United States
Surendra: Cherukuri
Concentration: Operations, Technology
GMAT 1: 670 Q48 V34
GMAT 2: 670 Q47 V35
GMAT 3: 720 Q50 V36
GPA: 4
WE: Research (Telecommunications)
GMAT ToolKit User Reviews Badge
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 22 Jan 2014, 17:11
10
ISBtarget wrote:
In Jefferson School, 300 students study French or Spanish or both. If 100 of these students do not study French, how many of these students study both French and Spanish?

(1) Of the 300 students, 60 do not study Spanish.
(2) A total of 240 of the students study Spanish.


The answer is D.
Its easy to solve with venn diagram approach
Attachments

File comment: Now
F= total number of students studying french =F
S= total number of students studying Spanish =S
F' = Students studying only french
S'=Students studying only spanish
F & S = students studying both french and spanish
Now we need to find out F & S
We have F + S =300 (whether french or spanish or both)
S' =100 (Students who study spanish but not french)
1.Of the 300 students, 60 do not study Spanish
this 60 = F'( students who study only french but not spanish)
so now looking at diagram F'+S'+ F&S = F+S =300
substituting 100+60+ F&S =300
F&S =140
2. A total of 240 of the students study Spanish
i.e. S'+ F&S =240 (total who study spanish)
we know S' =100
so F&S =140.
Give me KUDOS if this helps

Untitled.png
Untitled.png [ 10.01 KiB | Viewed 26360 times ]

Intern
Intern
User avatar
Joined: 17 May 2012
Posts: 32
In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 08 Oct 2014, 10:35
Hi Bunuel,

It might seem as a stupid question and I will request you to bare with me. I seem to understand how you get this part
Quote:
Given: 300={French}+{Spanish}-{Both}


But how do you infer this
Quote:
{Spanish}-{Both}=100
and this
Quote:
{French}-{Both}=60
is beyond me. Shouldn't {French}-{Both} = 240? I don't know what I am missing; I really like the equation approach but I am missing a vital link to form the quoted equations. Thanks a million if you can help on this.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 64314
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 11 Oct 2014, 12:35
1
aj0809 wrote:
Hi Bunuel,

It might seem as a stupid question and I will request you to bare with me. I seem to understand how you get this part
Quote:
Given: 300={French}+{Spanish}-{Both}


But how do you infer this
Quote:
{Spanish}-{Both}=100
and this
Quote:
{French}-{Both}=60
is beyond me. Shouldn't {French}-{Both} = 240? I don't know what I am missing; I really like the equation approach but I am missing a vital link to form the quoted equations. Thanks a million if you can help on this.


We are told that 100 of these students do not study French, so 100 students study Spanish only, which is {Spanish} - {Both}.
The same with {French} - {Both} = 60. 60 do not study Spanish, means that 60 students study French only, which is {French} - {Both}.

Theory on Overlapping Sets:
advanced-overlapping-sets-problems-144260.html
how-to-draw-a-venn-diagram-for-problems-98036.html

DS Overlapping Sets Problems to practice: search.php?search_id=tag&tag_id=45
PS Overlapping Sets Problems to practice: search.php?search_id=tag&tag_id=65
_________________
Intern
Intern
User avatar
Joined: 23 Nov 2014
Posts: 21
Location: China
Concentration: Entrepreneurship, General Management
GMAT 1: 550 Q41 V25
GMAT 2: 680 Q47 V35
WE: General Management (Hospitality and Tourism)
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 27 Dec 2014, 18:33
Bunuel wrote:
tom09b wrote:
I do not understand how we assume that Jefferson School has only 300 students. If this is not the total number then we cannot say anything from the statements, so answer is E. Am I right??


We are not assuming that. We are told that "in Jefferson School, 300 students study French or Spanish or both", there might be more students who study neither French nor Spanish. But this piece of information tells us that among these 300 students there is none who study neither French nor Spanish. So, 300={French}+{Spanish}-{Both}.

In Jefferson School, 300 students study French or Spanish or both. If 100 of these students do not study French, how many of these students study both French and Spanish?

Given: 300 = {French} + {Spanish} - {Both} and {Spanish} - {Both} = 100 --> 300 = {French} + 100 --> {French} = 200.
Question: {Both}=?

(1) Of the 300 students, 60 do not study Spanish --> {French} - {Both} = 60 --> 200 - {Both} = 60 --> {Both} = 140. Sufficient.

(2) A total of 240 of the students study Spanish --> {Spanish} = 240 --> 240 - {Both} = 100 ---> {Both} = 140. Sufficient.

Answer: D.



Thanks Bunuel. Now its clear.This is an interesting problem because I assumed there would be some students who study neither. But I have learnt a new way to look at these problems and read carefully to understand the exact meaning. :-D :-D :-D :-D :-D :-D :-D

Insanity: doing the same thing over and over again and expecting different results. - Holds True for Learning for GMAT
Intern
Intern
User avatar
Joined: 17 May 2012
Posts: 32
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 16 Mar 2015, 22:58
Hi All,

I found the Venn Diagram approach is the best way to solve this Q. For more details check out the below link:
http://www.gmatquantum.com/og13/138-dat ... ition.html

Thanks,
AJ
Director
Director
User avatar
S
Status: Come! Fall in Love with Learning!
Joined: 05 Jan 2017
Posts: 514
Location: India
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 23 Feb 2017, 04:50
Prompt analysis
No. of student learning french = f
No. of students learning spanish = s

Therefore 300 =f +s +f and s and s =100.

Superset
The value of fs will lie in the range of 0 to 200.

Translation
In order to find f and s, we need:
1# the value of f.
2# the exact value of f and s
3# any equation to find f and f and s.

Statement analysis

St 1: f =60. Therefore from the above equation, we can find f and s =140 .ANSWER.
St 2: s +f and s =240. f and s =140. ANSWER.

Option D
_________________
GMAT Mentors
Image
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 937
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 12 Sep 2018, 13:20
ISBtarget wrote:
In Jefferson School, 300 students study French or Spanish or both. If 100 of these students do not study French, how many of these students study both French and Spanish?

(1) Of the 300 students, 60 do not study Spanish.
(2) A total of 240 of the students study Spanish.


\(? = {\text{French}} \cap {\text{Spanish}} = x\,\,\,\,\left( {{\text{see}}\,\,{\text{image}}\,\,{\text{attached}}} \right)\)

\(\left( 1 \right)\,\,\,300 = 60 + x + 100\,\,\,\,\, \Rightarrow \,\,\,\,x\,\,\,{\text{unique}}\)

\(\left( 2 \right)\,\,\,240 = x + 100\,\,\,\,\, \Rightarrow \,\,\,\,x\,\,\,{\text{unique}}\)

This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.
Attachments

12Set18_4r.gif
12Set18_4r.gif [ 19.03 KiB | Viewed 1442 times ]


_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
Intern
Intern
avatar
B
Joined: 19 May 2019
Posts: 41
Location: India
GMAT 1: 760 Q51 V41
Reviews Badge
Re: In Jefferson School, 300 students study French or Spanish or  [#permalink]

Show Tags

New post 26 Apr 2020, 07:05
ISBtarget wrote:
In Jefferson School, 300 students study French or Spanish or both. If 100 of these students do not study French, how many of these students study both French and Spanish?

(1) Of the 300 students, 60 do not study Spanish.
(2) A total of 240 of the students study Spanish.


Hi ISBtarget

Another good question involving Sets Theory this time.

So let's try to figure this out...

Question stem:

Total students = 300
Students study: French only [F], Spanish only [S] or both[F&S]
Students not studying French = 100 = [S]

Thus, 300 = [F] + [S] + [F&S]
==> 300 = [F] + 100 + [F&S]. {Equation 1}

To find: [F&S]

Statement 1: Of the 300 students, 60 do not study Spanish.
So, [F] = 60
Substituting this in equation 1:
300 = 60 + 100 + [F&S]
Thus, [F&S] = 140

Now, we know answer could be A or D

Statement 2:
A total of 240 of the students study Spanish.
So, [S] + [F&S] = 240
==> 100 + [F&S] = 240
Thus, [F&S] = 140

As both statements are independently able to give us the solution, Answer is (D).

Is my explanation fine? Would anyone here like me to explain anything else?
Pls share your thoughts. Thank you :)
_________________
GMAT 760- V41 Q51; 620 to 760, V27 to V41
Kellogg admit- Class of 2022
GMAT Club Bot
Re: In Jefferson School, 300 students study French or Spanish or   [#permalink] 26 Apr 2020, 07:05

In Jefferson School, 300 students study French or Spanish or

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne