GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 29 Jan 2020, 04:06 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # In the diagram, points A, B, and C are on the diameter of

Author Message
TAGS:

### Hide Tags

Senior Manager  Status: Finally Done. Admitted in Kellogg for 2015 intake
Joined: 25 Jun 2011
Posts: 439
Location: United Kingdom
GMAT 1: 730 Q49 V45
GPA: 2.9
WE: Information Technology (Consulting)
In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

10
63 00:00

Difficulty:

(N/A)

Question Stats: 34% (03:06) correct 66% (02:49) wrong based on 515 sessions

### HideShow timer Statistics In the diagram, points A, B, and C are on the diameter of the circle with center B. Additionally, all arcs pictured are semicircles. Suppose angle YXA = 105 degrees. What is the ratio of the area of the shaded region above the line YB to the area of the shaded region below the line YB? (Note: Diagram is not drawn to scale and angles drawn are not accurate.)

(A) ¾
(B) 5/6
(C) 1
(D) 7/5
(E) 9/7

Attachment: Circle.png [ 4.27 KiB | Viewed 30719 times ]

_________________
Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610
GMAT ==> 730

Originally posted by enigma123 on 08 Feb 2012, 18:27.
Last edited by Bunuel on 16 Jun 2015, 08:27, edited 3 times in total.
Math Expert V
Joined: 02 Sep 2009
Posts: 60772
In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

37
21 In the diagram, points A, B, and C are on the diameter of the circle with center B. Additionally, all arcs pictured are semicircles. Suppose angle YXA = 105 degrees. What is the ratio of the area of the shaded region above the line YB to the area of the shaded region below the line YB? (Note: Diagram is not drawn to scale and angles drawn are not accurate.)
(A) ¾
(B) 5/6
(C) 1
(D) 7/5
(E) 9/7 According to the central angle theorem <ABY=2*(180-105)=150 (for more on this check Circles chapter of Math Book: math-circles-87957.html). Hence <CBY=180-150=30.

The area of sector $$ABY=\frac{150}{360}*\pi{r^2}=\frac{5}{12}\pi{r^2}$$;
The area of sector $$CBY=\frac{30}{360}*\pi{r^2}=\frac{1}{12}\pi{r^2}$$;

The area of each of two small semicircles is $$\frac{\pi{(\frac{r}{2})^2}}{2}=\pi{\frac{r^2}{8}}$$ (as its radius is half of the radius of the big circle);

The are of the shaded region above BY is $$\frac{5}{12}\pi{r^2}-\pi{\frac{r^2}{8}=\frac{7}{24}\pi{r^2}$$;
The are of the shaded region below BY is $$\frac{1}{12}\pi{r^2}+\pi{\frac{r^2}{8}=\frac{5}{24}\pi{r^2}$$;

Ratio of the areas of the shaded regions is $$\frac{7}{5}$$.

Attachment: untitled.PNG [ 4.59 KiB | Viewed 31808 times ]

_________________
Intern  S
Joined: 24 Jun 2013
Posts: 31
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

7
Bunuel wrote:
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

It can also be solved the following way:

Three new triangles can be formed which will be isosceles triangles (please refer the attachment)
Hence,
x+y = 105 (given)
2(x+y+z) = 360 since ACYX is a quadrilateral
x+y+z = 180
-> z = 75

in Triangle, BYC, <YBC will be 180 - 2*z = 180 - 2*75 = 30 degrees.

(1) Area of the total shaded portion is half the area of the circle pi*(r^2)/2

(2) Area below the red line = area of segment BYC of circle + area of shaded semicircle BC
= (30/360)*(pi*r^2) + pi ((r/2)^2)/2
=pi*(r^2)/12+pi*(r^2)/8
=5 * pi * (r^2) / 24

(3) Area above the red line is (1)-(2) above
= [ pi * (r^2)/2 ] - [ 5 * pi* (r^2) / 24 ]
= 7 * pi * (r^2) / 24

Answer is (3) / (2) which is 7/5

Kudos if you like the post Attachments Circle 1.png [ 6.08 KiB | Viewed 24857 times ]

##### General Discussion
Senior Manager  Status: Finally Done. Admitted in Kellogg for 2015 intake
Joined: 25 Jun 2011
Posts: 439
Location: United Kingdom
GMAT 1: 730 Q49 V45
GPA: 2.9
WE: Information Technology (Consulting)
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

Hi Bunuel - can you please help? How did you get the area of two small semi circles??
_________________
Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610
GMAT ==> 730
Math Expert V
Joined: 02 Sep 2009
Posts: 60772
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

1
enigma123 wrote:
Hi Bunuel - can you please help? How did you get the area of two small semi circles??

The radius of the small semicircles is r/2, where r is the radius of the large circle. Thus the area of each is half of the area of the circle with the radius of r/2: $$\frac{\pi{(\frac{r}{2})^2}}{2}=\pi{\frac{r^2}{8}}$$.

Hope it's clear.
_________________
Intern  Joined: 16 Dec 2011
Posts: 36
GMAT Date: 04-23-2012
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

1
thanks bunuel for nice explanation +1 kudos
Math Expert V
Joined: 02 Sep 2009
Posts: 60772
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

_________________
Intern  Joined: 08 Sep 2012
Posts: 6
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

Hi Bunel,

I didn't understand the below mentioned part. I did refer to the link provided by you. Can you please can explain this central angle theorem.

"According to the central angle theorem <ABY=2*(180-105)=150 (for more on this check Circles chapter of Math Book: math-circles-87957.html). Hence <CBY=180-150=30"

Thank you
Math Expert V
Joined: 02 Sep 2009
Posts: 60772
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

2
Genfi wrote:
Hi Bunel,

I didn't understand the below mentioned part. I did refer to the link provided by you. Can you please can explain this central angle theorem.

"According to the central angle theorem <ABY=2*(180-105)=150 (for more on this check Circles chapter of Math Book: math-circles-87957.html). Hence <CBY=180-150=30"

Thank you

Check the diagram below:
Attachment: .png [ 5.5 KiB | Viewed 27639 times ]

The same as here: Hope it's clear.
_________________
Manager  Joined: 17 Apr 2013
Posts: 56
Location: United States
Concentration: Other, Finance
Schools: SDSU '16
GMAT 1: 660 Q47 V34
GPA: 2.76
WE: Analyst (Real Estate)
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

I Thought that's a nice question for a strategic guess (50/50) since the shaded area above the line seemed bigger therefore the answer should be either 3/4 or 5/6 but they tricked me !! Intern  Joined: 19 Nov 2013
Posts: 24
Location: India
Concentration: Strategy, Technology
WE: Information Technology (Computer Software)
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

excellent question!! I dont think there's any better resource and better guide than Bunnuel .. when it comes to Maths!!
Manager  Joined: 28 Apr 2014
Posts: 189
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

Bunuel - I am not clear on what is meant by -
Quote:
all arcs pictured are semicircles
?
Math Expert V
Joined: 02 Sep 2009
Posts: 60772
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

himanshujovi wrote:
Bunuel - I am not clear on what is meant by -
Quote:
all arcs pictured are semicircles
?

Red and blue arcs below are semicircles:
Attachment: Untitled.png [ 4.54 KiB | Viewed 24058 times ]

_________________
Manager  B
Joined: 10 Mar 2014
Posts: 177
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

Bunuel wrote:
In the diagram, points A, B, and C are on the diameter of the circle with center B. Additionally, all arcs pictured are semicircles. Suppose angle YXA = 105 degrees. What is the ratio of the area of the shaded region above the line YB to the area of the shaded region below the line YB? (Note: Diagram is not drawn to scale and angles drawn are not accurate.)
(A) ¾
(B) 5/6
(C) 1
(D) 7/5
(E) 9/7
Attachment:
untitled.PNG

According to the central angle theorem <ABY=2*(180-105)=150 (for more on this check Circles chapter of Math Book: math-circles-87957.html). Hence <CBY=180-150=30.

The area of sector $$ABY=\frac{150}{360}*\pi{r^2}=\frac{5}{12}\pi{r^2}$$;
The area of sector $$CBY=\frac{30}{360}*\pi{r^2}=\frac{1}{12}\pi{r^2}$$;

The area of each of two small semicircles is $$\frac{\pi{(\frac{r}{2})^2}}{2}=\pi{\frac{r^2}{8}}$$ (as its radius is half of the radius of the big circle);

The are of the shaded region above BY is $$\frac{5}{12}\pi{r^2}-\pi{\frac{r^2}{8}=\frac{7}{24}\pi{r^2}$$;
The are of the shaded region below BY is $$\frac{1}{12}\pi{r^2}+\pi{\frac{r^2}{8}=\frac{5}{24}\pi{r^2}$$;

Ratio of the areas of the shaded regions is $$\frac{7}{5}$$.

Hi Bunuel,

One query. As we know central angle of a circle is twice the inscribed angle. i.e. if inscribed angle is x then central angle is 2x.

So here if i see angle on YXA is 105 then my central angle on B should be 210.

Thanks.
Manager  Joined: 07 Apr 2014
Posts: 98
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

sorry, this might be a basic question . I would like to understand this picture

angle YXA = 105 then according to the central angle theorem, why its not 2*105 .. you have consider exterior angle for X but how we shall determine it. Please advise.
Manager  Joined: 10 Jun 2015
Posts: 110
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

enigma123 wrote:
Attachment:
Circle.png
In the diagram, points A, B, and C are on the diameter of the circle with center B. Additionally, all arcs pictured are semicircles. Suppose angle YXA = 105 degrees. What is the ratio of the area of the shaded region above the line YB to the area of the shaded region below the line YB? (Note: Diagram is not drawn to scale and angles drawn are not accurate.)

(A) ¾
(B) 5/6
(C) 1
(D) 7/5
(E) 9/7

arc YC subtends an angle 30 degree with the center.
Area below line YB is area of circle x (1/12 + 1/8)
Area of the shaded region is half of the area of the circle.
Director  V
Joined: 05 Mar 2015
Posts: 960
In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

Bunuel wrote:
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

Attachment: Circle.png [ 7.13 KiB | Viewed 9999 times ]

Here is the another approach for finding the angle of arc YBC
angle AXC=90(angle in semicircle is 90)
so angle YXC =angle YXA-angle AXC= 105-90=15
as angle YBC=2*angle YXC =2*15=30deg.
as we find the area of sector YBC ..rest can be find with the solution suggested above by bunuel..

thanks
Intern  B
Joined: 02 Oct 2016
Posts: 35
Schools: HEC Dec '17
In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

I used a visual approach to solve this question because I couldn't think of the central angle theorem.

If you joined the points A and C, you will see two smaller semicircles: one on the right side which is shaded, and one on the left which is not shaded. These will have the same area. For convenience's sake, redraw the the circle without the yin-yang portion and only consider the semicircle on the left side of diameter AC.

Now you need the ratio of the areas above and below the line BY. Clearly, the upper portion is larger than the lower portion, hence the ratio has to be greater than 1.
That allows us to eliminate options A,B and C.

Now between D and E, I chose D because sum of the ratios of D and E are 7+5 = 12 and 9+7=16 respectively and only 12 is a multiple of 360. My reasoning: If the ratio was 9:7 the calculations for the respective areas would be more complex if one opted for the conventional method of solving this questions
SVP  V
Joined: 26 Mar 2013
Posts: 2344
Concentration: Operations, Strategy
Schools: Erasmus '21 (M\$)
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

Bunuel wrote:

Check the diagram below:
Attachment:
.png

The same as here: Hope it's clear.

Dear Bunuel,

I will grateful to you if you can explain how the central angle theorem help you.

I have reviewed the lesson you stated. I understood the 2 clear cases of the central angle but the third angle is not sharing same arc like the other 2. IN the question the angle is formed by two intersecting lines Ax & Yx. How come they share same arc with ABY?

Thanks
Math Expert V
Joined: 02 Sep 2009
Posts: 60772
Re: In the diagram, points A, B, and C are on the diameter of  [#permalink]

### Show Tags

Mo2men wrote:
Bunuel wrote:

Check the diagram below:
Attachment:
.png

The same as here: Hope it's clear.

Dear Bunuel,

I will grateful to you if you can explain how the central angle theorem help you.

I have reviewed the lesson you stated. I understood the 2 clear cases of the central angle but the third angle is not sharing same arc like the other 2. IN the question the angle is formed by two intersecting lines Ax & Yx. How come they share same arc with ABY?

Thanks

The following link should help: https://www.mathopenref.com/arccentralangletheorem.html
_________________ Re: In the diagram, points A, B, and C are on the diameter of   [#permalink] 21 Dec 2017, 20:08

Go to page    1   2    Next  [ 22 posts ]

Display posts from previous: Sort by

# In the diagram, points A, B, and C are on the diameter of  