Last visit was: 18 Nov 2025, 20:31 It is currently 18 Nov 2025, 20:31
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
monirjewel
Joined: 06 Feb 2010
Last visit: 18 Oct 2014
Posts: 124
Own Kudos:
3,557
 [49]
Given Kudos: 182
Concentration: Marketing, Leadership
Schools: University of Dhaka - Class of 2010
GPA: 3.63
WE:Business Development (Consumer Packaged Goods)
Schools: University of Dhaka - Class of 2010
Posts: 124
Kudos: 3,557
 [49]
8
Kudos
Add Kudos
41
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,088
 [22]
11
Kudos
Add Kudos
11
Bookmarks
Bookmark this Post
avatar
Jaisri
Joined: 09 Jun 2012
Last visit: 19 Jan 2015
Posts: 23
Own Kudos:
133
 [7]
Given Kudos: 13
Posts: 23
Kudos: 133
 [7]
7
Kudos
Add Kudos
Bookmarks
Bookmark this Post
General Discussion
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,088
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sagnik2422
Bunuel
In the rectangular coordinate system above the area of triangle PQR is what fraction of the area triangle LMN?

A. 1/9
B. 1/8
C. 1/6
D. 1/5
E. 1/3

The area of a triangle equals to \(area=\frac{1}{2}*base*height\).

Now the base of triangle PQR (or simply the length of line segment PQ) is 4 units (the difference between x-coordinates of the points P and Q), and the height is also 4 units (the altitude from the point Q to the x-axis equals to 4 units). So \(area_{PQR}=\frac{1}{2}*4*4=8\);

Similarly the base of triangle LMN is 12 units (the difference between x-coordinates of the points L and N), and the height is also 12 units (the altitude from the point M to the x-axis equals to 12 units). So \(area_{LMN}=\frac{1}{2}*12*12=72\);

Thus \(\frac{area_{PQR}}{area_{LMN}}=\frac{8}{72}=\frac{1}{9}\).

Answer: A.

As for the difficulty level, I'd say around 600.

Hope it's clear.


also for altitude are we subtracting the y coordinate of R from y coordiante of Q? (4 - 0) ?

No. The coordinates of Q are (8, 4). So, Q is 4 units above 0.
User avatar
shyind
Joined: 26 Nov 2014
Last visit: 28 Dec 2015
Posts: 71
Own Kudos:
Given Kudos: 8
Products:
Posts: 71
Kudos: 506
Kudos
Add Kudos
Bookmarks
Bookmark this Post
For Area PQR,

Base = 10-6 = 4 (x axis points P & R)
Height = 4 (y axis point Q)

Area of PQR = 1/2 * b * h =1/2 * 4 * 4 = 8

Also for Area LMN, Same procedure as above

Base = 14-2 = 12
Height = 12-0 = 12

Area of LMN = 1/2 * b * h =1/2 * 12 * 12 = 72

Area PQR/ Area LMN = 8/72 = 1/9
User avatar
shasadou
Joined: 12 Aug 2015
Last visit: 24 Nov 2022
Posts: 219
Own Kudos:
Given Kudos: 1,476
Concentration: General Management, Operations
GMAT 1: 640 Q40 V37
GMAT 2: 650 Q43 V36
GMAT 3: 600 Q47 V27
GPA: 3.3
WE:Management Consulting (Consulting)
GMAT 3: 600 Q47 V27
Posts: 219
Kudos: 3,098
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Jaisri
monirjewel
Attachment:
Coordinate.jpg
In the rectangular coordinate system above the area of triangle PQR is what fraction of the area triangle LMN?

A. 1/9
B. 1/8
C. 1/6
D. 1/5
E. 1/3
Understanding the question:
Two triangles are given. They look proportional/similar but this should be confirmed. Also, means are provided to calculate length of base and height.

Facts to refer:
If 2 triangles are similar, then the ratio of their area= (ratio of the sides)^2

What's given in the question and what it implies (noted as =>):
Coordinates for L, P, R, N are given => Base of smaller triangle = 4 and that of larger triangle =12
Coordinate for M and Q are given => Height of smaller triangle = 4 and that of larger triangle =12

What is asked for:
Area of PQR/Area of LMN => Ratio of the areas

Solution:
Since the base and height of the triangles are of the same ratio, the 2 triangles are similar. (Since the base and height are of equal ratio, the other 2 sides will also be of the same ratio.) Hence the fact given in "Facts to refer" can be used.
Ratio of sides = 4/12 =1/3
(Ratio of areas) = (1/3)^2 = 1/9

do we really need to confirm the similarity of the 2 triangles for PS question? if I am not mistaken in PS questions the figures are drawn to scale if not stated otherwise (in DS questions figures are NOT drawn to scale if not stated otherwise). Given that the base of the larger triangle relates to the base of the smaller one as 12/4 => 1/3 we can conclude that the areas should follow the ratio (1/3)^2 = 1/9
User avatar
ydmuley
User avatar
Retired Moderator
Joined: 19 Mar 2014
Last visit: 01 Dec 2019
Posts: 809
Own Kudos:
Given Kudos: 199
Location: India
Concentration: Finance, Entrepreneurship
GPA: 3.5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Coordinate.jpg[/attachment]In the rectangular coordinate system above the area of triangle PQR is what fraction of the area triangle LMN?

\(Area of Triangle = \frac{1}{2} * Base * Height\)

\(Area PQR = \frac{1}{2} * 4 * 4\)

\(Area PQR = 8\)

\(Area LMN = \frac{1}{2} * 12 * 12\)

\(Area LMN = 72\)

Ratio:

\(\frac{Area PQR}{Area LMN} = \frac{8}{72}\)

\(\frac{Area PQR}{Area LMN} = \frac{1}{9}\)

Hence, Answer is A
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,589
Own Kudos:
Posts: 38,589
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105355 posts
Tuck School Moderator
805 posts