Last visit was: 19 Nov 2025, 12:32 It is currently 19 Nov 2025, 12:32
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
705-805 Level|   Coordinate Plane|                        
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,341
 [346]
13
Kudos
Add Kudos
332
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,341
 [71]
27
Kudos
Add Kudos
43
Bookmarks
Bookmark this Post
avatar
wings.ap
Joined: 10 Aug 2015
Last visit: 29 Jun 2019
Posts: 20
Own Kudos:
59
 [45]
Given Kudos: 232
Location: India
GMAT 1: 700 Q48 V38
GPA: 3.5
WE:Consulting (Computer Software)
GMAT 1: 700 Q48 V38
Posts: 20
Kudos: 59
 [45]
22
Kudos
Add Kudos
23
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,341
 [37]
9
Kudos
Add Kudos
28
Bookmarks
Bookmark this Post
wings.ap
Bunuel
In the xy-plane, if line k has negative slope and passes through the point (-5,r) , is the x-intercept of line k positive?

(1) The slope of line k is -5.
(2) r > 0

Diagnostic Test
Question: 39
Page: 26
Difficulty: 650
I will not repeat the solutions above because I did the same way.

I will just repeat the most important takeaway: When slope is negative then both intercepts will have equal sign but when the slope is positive the intercepts will have opposite signs. Remember this and bully your way through these type of questions.

TIPS ON SLOPE AND QUADRANTS:

1. If the slope of a line is negative, the line WILL intersect quadrants II and IV. X and Y intersects of the line with negative slope have the same sign. Therefore if X and Y intersects are positive, the line intersects quadrant I; if negative, quadrant III.

2. If the slope of line is positive, line WILL intersect quadrants I and III. Y and X intersects of the line with positive slope have opposite signs. Therefore if X intersect is negative, line intersects the quadrant II too, if positive quadrant IV.

3. Every line (but the one crosses origin OR parallel to X or Y axis OR X and Y axis themselves) crosses three quadrants. Only the line which crosses origin \((0,0)\) OR is parallel to either of axis crosses only two quadrants.

4. If a line is horizontal it has a slope of \(0\), is parallel to X-axis and crosses quadrant I and II if the Y intersect is positive OR quadrants III and IV, if the Y intersect is negative. Equation of such line is y=b, where b is y intersect.

5. If a line is vertical, the slope is not defined, line is parallel to Y-axis and crosses quadrant I and IV, if the X intersect is positive and quadrant II and III, if the X intersect is negative. Equation of such line is \(x=a\), where a is x-intercept.

6. For a line that crosses two points \((x_1,y_1)\) and \((x_2,y_2)\), slope \(m=\frac{y_2-y_1}{x_2-x_1}\)

7. If the slope is 1 the angle formed by the line is \(45\) degrees.

8. Given a point and slope, equation of a line can be found. The equation of a straight line that passes through a point \((x_1, y_1)\) with a slope \(m\) is: \(y - y_1 = m(x - x_1)\)

Check for more here: math-coordinate-geometry-87652.html

General Discussion
User avatar
semwal
User avatar
Current Student
Joined: 04 May 2013
Last visit: 13 May 2017
Posts: 206
Own Kudos:
515
 [10]
Given Kudos: 70
Location: India
Concentration: Operations, Human Resources
Schools: XLRI GM"18
GPA: 4
WE:Human Resources (Human Resources)
Schools: XLRI GM"18
Posts: 206
Kudos: 515
 [10]
7
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
i solved like this-

line passes thru (-5,r). Eqn r= -5m + c. since slope is -ve, if c is +ve , x intercept = +ve. otherwise -ve.

statement 1. m=-5. r= 25 +c . c= r-25. c could be +ve or -ve depending on r.

statement 2. r> 0. c = r+5m. c could be +ve or -ve depending on value of m.

together- c= r-25; r>0. c could still be +ve or - ve . Hence x intercept could be +ve or -ve.

Hence ans = E

Is it ok?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,000
 [17]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,000
 [17]
11
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
Bunuel
In the xy-plane, if line k has negative slope and passes through the point (-5,r) , is the x-intercept of line k positive?

(1) The slope of line k is -5.
(2) r > 0

Diagnostic Test
Question: 39
Page: 26
Difficulty: 650

Responding to a pm:

Check out this post first: https://www.gmatclub.com/forum/veritas-prep-resource-links-no-longer-available-399979.html#/2011/09 ... -vertices/

Slope of a line = - y intercept/x intercept

If slope is negative, x intercept will be positive when y intercept is positive too. So we need to know the sign of the y intercept.

(1) The slope of line k is –5.
Does not matter what the actual slope is. We already know it is negative. We need the sign of y intercept.

(2) r > 0
The line passes through (-5, r) where r is positive. This just gives one point through which the line passes. The y intercept could still be positive or negative as shown by the two diagrams in Bunuel's first post above.

Using both also we don't know the sign of the y intercept.

Answer (E)
User avatar
Kurtosis
User avatar
Current Student
Joined: 13 Apr 2015
Last visit: 10 Nov 2021
Posts: 1,395
Own Kudos:
5,124
 [9]
Given Kudos: 1,228
Location: India
Products:
Posts: 1,395
Kudos: 5,124
 [9]
5
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
Given: (x, y) = (-5, r)

St1: Slope of line k = -5
To find the x intercept let the other co-ordinate be (x, 0)
(r - 0)/(-5 - x) = -5
r = 25 + 5x
x = (r - 25)/5
x intercept is positive if r > 25 and negative if r < 25
Not Sufficient

St2: r > 0 --> Clearly insufficient

Combining St1 and St2: r may still be < 25 or > 25
Not Sufficient

Answer: E
User avatar
JeffTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 04 Mar 2011
Last visit: 05 Jan 2024
Posts: 2,977
Own Kudos:
8,390
 [2]
Given Kudos: 1,646
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Expert
Expert reply
Posts: 2,977
Kudos: 8,390
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
GMATMadeeasy
In the xy-plane, if line k has negative slope and passes through the point (-5,r) , is the x-intercept of line k positive?

(1) The slope of line k is -5.
(2) r > 0

We need to determine whether the x-intercept of line k is positive, given that line k has a negative slope and passes through the point (-5, r).

We can let the slope of line k be m and the x-intercept of line k be a; that is, line k passes through the point (a, 0). Using the slope formula m = (y_2 - y_1)/(x_2 - x_1), we have:

m = (0 - r)/(a -(-5))= -r/(a + 5)

Statement One Alone:

The slope of line k is -5.

Using the information in statement one, we can say the following:

-r/(a + 5) = -5

a + 5 = r/5

a = r/5 - 5

Since we don't know the value of r, we cannot determine the value of a.

For example, if r = 5, a = -4, which is negative. However, if r = 50, a = 5, which is positive. Statement one alone is not sufficient to answer the question. We can eliminate answer choices A and D.

Statement Two Alone:

r > 0

Knowing r is positive does not give us enough information to determine whether a, the x-intercept of line k, is positive. Statement two alone is not sufficient to answer the question. We can eliminate answer choice B.

Statements One and Two Together:

Looking at our work from statement one, and keeping in mind that r > 0 from statement two, we see that a can be positive or negative.

For example, if r = 5 then a = -4, which is negative. However, if r = 50 then a = 5, which is positive. The two statements together are still not sufficient to answer the question.

Answer: E
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
35,351
 [10]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,351
 [10]
8
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Bunuel
In the xy-plane, if line k has negative slope and passes through the point (-5,r) , is the x-intercept of line k positive?

(1) The slope of line k is -5.
(2) r > 0

Target question: Is the x-intercept of line k positive?

When I scan the two statements, I can see that, if r is POSITIVE, then the point (-5, r) can be very close to the x-axis or the point (-5, r) can be very far from the x-axis.
Given this, let's go straight to the statements COMBINED, and see if we can find two cases that yield DIFFERENT answers to the target question.

CASE A: If r =1, then the point (-5, r) is very close to the x-axis, and we get something like this:

In this case, the answer to the target question is NO, the x-intercept of line k is NOT positive


CASE B: If r =50, then the point (-5, r) is far from the x-axis, and we get something like this:

In this case, the answer to the target question is YES, the x-intercept of line k IS positive

Since we cannot answer the target question with certainty, the combined statements are NOT SUFFICIENT

Answer: E

Cheers,
Brent
User avatar
dave13
Joined: 09 Mar 2016
Last visit: 12 Aug 2025
Posts: 1,108
Own Kudos:
Given Kudos: 3,851
Posts: 1,108
Kudos: 1,113
Kudos
Add Kudos
Bookmarks
Bookmark this Post
BrentGMATPrepNow
Bunuel
In the xy-plane, if line k has negative slope and passes through the point (-5,r) , is the x-intercept of line k positive?

(1) The slope of line k is -5.
(2) r > 0

Target question: Is the x-intercept of line k positive?

When I scan the two statements, I can see that, if r is POSITIVE, then the point (-5, r) can be very close to the x-axis or the point (-5, r) can be very far from the x-axis.
Given this, let's go straight to the statements COMBINED, and see if we can find two cases that yield DIFFERENT answers to the target question.

CASE A: If r =1, then the point (-5, r) is very close to the x-axis, and we get something like this:

In this case, the answer to the target question is NO, the x-intercept of line k is NOT positive


CASE B: If r =50, then the point (-5, r) is far from the x-axis, and we get something like this:

In this case, the answer to the target question is YES, the x-intercept of line k IS positive

Since we cannot answer the target question with certainty, the combined statements are NOT SUFFICIENT

Answer: E

Cheers,
Brent

BrentGMATPrepNow hey Brent :) perhaps you can explain why most people set y = 0 to find x intercept or vice versa and doest it change target question
as far as i know i can apply this formula \((y-y_1) = m (x-x_1)\) when i know slope and one point, but i know that one point is ( -5, r) where R is unknown hence i dont have complete information about this point :grin:
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
35,351
 [1]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,351
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dave13
[
BrentGMATPrepNow hey Brent :) perhaps you can explain why most people set y = 0 to find x intercept or vice versa and doest it change target question
as far as i know i can apply this formula \((y-y_1) = m (x-x_1)\) when i know slope and one point, but i know that one point is ( -5, r) where R is unknown hence i dont have complete information about this point :grin:

Once we know the slope is -5, the equation of the line becomes y = -5x + b
We also know that the line passes through the point (-5,r) (and statement 2 tells us r is POSITIVE)

The x-intercept (what the target question is asking about) will be the x-value that satisfies the line's equation when y = 0

At this point we can test various values of r.

If r = 1, then the line passes through the point (-5, 1)
Plug these values into our equation, y = -5x + b, to get: 1 = -5(-5) + b, which means b = -24
So, in this case, the equation of a line is: y = -5x - 24
To find the x-intercept, plug in y = 0 to get: 0 = -5x - 24
Solve to get: x = -24/5, which means the x-intercept is LESS THAN zero.

If r = 50, then the line passes through the point (-5, 50)
Plug these values into our equation, y = -5x + b, to get: 50 = -5(-5) + b, which means b = 25
So, in this case, the equation of a line is: y = -5x + 25
To find the x-intercept, plug in y = 0 to get: 0 = -5x + 25
Solve to get: x = 5, which means the x-intercept is GREATER THAN zero.

So the combined statements are not sufficient.

Answer: E
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 19 Nov 2025
Posts: 21,716
Own Kudos:
26,996
 [1]
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,716
Kudos: 26,996
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dave13
JeffTargetTestPrep
GMATMadeeasy
In the xy-plane, if line k has negative slope and passes through the point (-5,r) , is the x-intercept of line k positive?

(1) The slope of line k is -5.
(2) r > 0

We need to determine whether the x-intercept of line k is positive, given that line k has a negative slope and passes through the point (-5, r).

We can let the slope of line k be m and the x-intercept of line k be a; that is, line k passes through the point (a, 0). Using the slope formula m = (y_2 - y_1)/(x_2 - x_1), we have:

m = (0 - r)/(a -(-5))= -r/(a + 5)

Statement One Alone:

The slope of line k is -5.

Using the information in statement one, we can say the following:

-r/(a + 5) = -5

a + 5 = r/5

a = r/5 - 5

Since we don't know the value of r, we cannot determine the value of a.

For example, if r = 5, a = -4, which is negative. However, if r = 50, a = 5, which is positive. Statement one alone is not sufficient to answer the question. We can eliminate answer choices A and D.

Statement Two Alone:

r > 0

Knowing r is positive does not give us enough information to determine whether a, the x-intercept of line k, is positive. Statement two alone is not sufficient to answer the question. We can eliminate answer choice B.

Statements One and Two Together:

Looking at our work from statement one, and keeping in mind that r > 0 from statement two, we see that a can be positive or negative.

For example, if r = 5 then a = -4, which is negative. However, if r = 50 then a = 5, which is positive. The two statements together are still not sufficient to answer the question.

Answer: E

Hi JeffTargetTestPrep ScottTargetTestPrep

can you pls explain why did you assume that line k passes through the point (a, 0) :? "0" is not mentioned . Doesn`t "0" change the target question and why :?
Response:
The definition of x-intercept is the point where some line crosses the x-axis. Since the y-coordinates of every point on the x-axis is 0, the y-coordinate of the x-intercept of a line must also be 0. Thus, whenever we are told that the x-intercept of some line is a, we should understand that the line is passing through (a, 0). Similarly for the y-intercept; if we are told that the y-intercept of some line is b, then that line is passing through (0, b). Therefore, the question does not need to mention “0;” the y-coordinate of every x-intercept is 0.
User avatar
2020prep2020
Joined: 03 Jul 2020
Last visit: 16 May 2023
Posts: 18
Own Kudos:
15
 [1]
Given Kudos: 9
Posts: 18
Kudos: 15
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
could someone explain why B is not correct?

X intercept is 0=kx+b;kx=-b; x=-(b/k)>0?
Since we know that k is negative we either need to know the sign of b or the sign of b/k
From the (2) statement we have
r=-5k+b; since r>0; -5k+b>0; -5k>-b;b>5k;b/k>5
Since b/k is bigger than 5 we know that it is positive. therefore the x intercept is positive
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,588
Own Kudos:
Posts: 38,588
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105390 posts
496 posts