Bunuel
GMATGURU1
This is a great method but using this I am not getting an expected answer! Can Karishma and other please help me find where I am wrong?
The problem is (x - 2)(x + 1)/x(x+2) <= 0
The graph will be +++ -2 ------ -1 +++++ 0 ------- 2 ++++++
So the answer will be 0 < x <= 2 and -2 < x < -1
But in Arun Sharma book, the answer given is -2 < x <= 2
Can you help?
Solution set for \(\frac{(x - 2)(x + 1)}{x(x+2)}\leq{0}\) is \(-2<x\leq{-1}\) and \(0<x\leq{2}\). So, you've done everything right, except < sign for the second range, which should be <=.
Yes even I think so that I am correct but in that book (famous Arun Sharma book for CAT), he writes the following...
case 1) Numerator positive and denominator negative: This occurs only between -2 < x < -1
case 2) Numerator negative and denominator positive: Numerator is negative when (x - 2) and (x + 1) take opposite signs. This can be got for ...
case a) x - 2 < 0 and x + 1 > 0 i.e. x < 2 and x >- 1
case b) x - 2 > 0 and x + 1 < 0 i.e. x > 2 and x < -1. --- Cannot happen
Hence answer is -2 < x <= 2.
-------------------------------------
The point I want to make here is, using our curve savy method we are getting a different answer. Using our answer x is not coming between 0 and -1. but the answer given in the book take the full range of -2 < x <= 2
So do we need any more tweaks in out curve method?
Thanks!