Shiv2016
Hi
I am not able to understand the graph. How do we know which one is negative/positive? How does this graph help us in solving inequalities?
Thanks
Dear
Shiv2016,
I'm happy to respond.
I see that
abhimahna already gave I wonderful explanation. I will just add a few points.
The post at the beginning of the thread is not 100% accurate and it is way to general for the GMAT. Inequalities with powers of x is a exceeding rare topic on the GMAT, and when there is a power in an inequality, it almost always is just x. I think you could take 50 GMATs in a row and not see a power of x higher than 2 in an inequality.
You may find this blog helpful:
GMAT Quadratic InequalitiesI definitely agree that finding the roots, the x-values that make the function zero, is the first step. Find these, and put these on a number line.
If the highest power is simply 2, then you should know that graph is a parabola. If the coefficient of \(x^2\) is positive, then the parabola opens upward, like the letter U. If the coefficient of \(x^2\) is negative, then the parabola opens downward, like an upside-down U. Right there, that should tell you where the function is positive or negative.
Higher powers of x (\(x^3\), \(x^4\), etc.) appear infrequently. The alternating pattern doesn't always work: in particular, the signs don't alternate if there's a repeated root, e.g. \(x^3 - 4x^2 + 4x > 0\)). That's a caveat for higher mathematics, but I don't think anyone would ever need to know this for the GMAT.
My friend, part of the reason you were confused is because the person who opened the thread was talking about more advanced math than you need for the GMAT. People who study engineering learn way more math than is needed for the GMAT, and some of them like to show off, but this doesn't really help anyone.
Does all this make sense?
Mike