It is currently 20 Jan 2018, 07:17

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Let n~ be defined for all positive integers n as the remainder when (n

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

2 KUDOS received
Current Student
User avatar
Joined: 12 Aug 2015
Posts: 297

Kudos [?]: 615 [2], given: 1476

Concentration: General Management, Operations
GMAT 1: 640 Q40 V37
GMAT 2: 650 Q43 V36
GMAT 3: 600 Q47 V27
GPA: 3.3
WE: Management Consulting (Consulting)
Let n~ be defined for all positive integers n as the remainder when (n [#permalink]

Show Tags

New post 05 Nov 2015, 04:57
2
This post received
KUDOS
12
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  25% (medium)

Question Stats:

66% (00:56) correct 34% (01:01) wrong based on 331 sessions

HideShow timer Statistics

Let n~ be defined for all positive integers n as the remainder when (n - 1)! is divided by n.

What is the value of 32~ ?

A. 0
B. 1
C. 2
D. 8
E. 31
[Reveal] Spoiler: OA

_________________

KUDO me plenty

Kudos [?]: 615 [2], given: 1476

2 KUDOS received
Intern
Intern
avatar
Joined: 21 Aug 2013
Posts: 4

Kudos [?]: 3 [2], given: 2

Concentration: International Business, Leadership
GPA: 2.9
WE: Programming (Computer Software)
Re: Let n~ be defined for all positive integers n as the remainder when (n [#permalink]

Show Tags

New post 05 Nov 2015, 06:14
2
This post received
KUDOS
1
This post was
BOOKMARKED
n~ = (n-1)!

so 32~ = (32-1)! = 31!

when 31!/32 we have 16*2 inside 31!

hence 32 gets cancelled and we get remainder as 0

Kudos [?]: 3 [2], given: 2

2 KUDOS received
Retired Moderator
User avatar
P
Joined: 12 Aug 2015
Posts: 2340

Kudos [?]: 1000 [2], given: 682

GRE 1: 323 Q169 V154
GMAT ToolKit User Premium Member
Re: Let n~ be defined for all positive integers n as the remainder when (n [#permalink]

Show Tags

New post 16 Mar 2016, 00:57
2
This post received
KUDOS
32 = 8*4 which are both present in 31!
so Remainder =0
hence A
_________________

Give me a hell yeah ...!!!!!

Kudos [?]: 1000 [2], given: 682

1 KUDOS received
Director
Director
avatar
S
Joined: 12 Nov 2016
Posts: 791

Kudos [?]: 39 [1], given: 166

Re: Let n~ be defined for all positive integers n as the remainder when (n [#permalink]

Show Tags

New post 15 Apr 2017, 12:39
1
This post received
KUDOS
Ok so I was initially not able to do this problem because I didn't understand how to divide 31!/32...

Now that you guys have made the problem more clear I have a question-

5!/15 must be an integer? Because 5x4x3x2x1 contains the factors of 15 (5 x 3)

When I do 17!/30 in a calculator the result is not an integer?

Kudos [?]: 39 [1], given: 166

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43334

Kudos [?]: 139559 [1], given: 12794

Re: Let n~ be defined for all positive integers n as the remainder when (n [#permalink]

Show Tags

New post 16 Apr 2017, 00:27
1
This post received
KUDOS
Expert's post
Nunuboy1994 wrote:
Ok so I was initially not able to do this problem because I didn't understand how to divide 31!/32...

Now that you guys have made the problem more clear I have a question-

5!/15 must be an integer? Because 5x4x3x2x1 contains the factors of 15 (5 x 3)

When I do 17!/30 in a calculator the result is not an integer?


First of all, 17!/30 = 11856247603200 = integer, but what 17!/30 has to do with this problem?
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 139559 [1], given: 12794

1 KUDOS received
Director
Director
avatar
S
Joined: 12 Nov 2016
Posts: 791

Kudos [?]: 39 [1], given: 166

Re: Let n~ be defined for all positive integers n as the remainder when (n [#permalink]

Show Tags

New post 16 Apr 2017, 18:09
1
This post received
KUDOS
Bunuel wrote:
Nunuboy1994 wrote:
Ok so I was initially not able to do this problem because I didn't understand how to divide 31!/32...

Now that you guys have made the problem more clear I have a question-

5!/15 must be an integer? Because 5x4x3x2x1 contains the factors of 15 (5 x 3)

When I do 17!/30 in a calculator the result is not an integer?


First of all, 17!/30 = 11856247603200 = integer, but what 17!/30 has to do with this problem?


I trying to demonstrate the concept in this problem, which is new to me, in a different example- I think the calculator's notation just makes it appear as 1.something^e even though that doesn't necessarily mean it's not an integer. It's clear now.

Kudos [?]: 39 [1], given: 166

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43334

Kudos [?]: 139559 [1], given: 12794

Let n~ be defined for all positive integers n as the remainder when (n [#permalink]

Show Tags

New post 16 Apr 2017, 22:51
1
This post received
KUDOS
Expert's post
Nunuboy1994 wrote:
Bunuel wrote:
Nunuboy1994 wrote:
Ok so I was initially not able to do this problem because I didn't understand how to divide 31!/32...

Now that you guys have made the problem more clear I have a question-

5!/15 must be an integer? Because 5x4x3x2x1 contains the factors of 15 (5 x 3)

When I do 17!/30 in a calculator the result is not an integer?


First of all, 17!/30 = 11856247603200 = integer, but what 17!/30 has to do with this problem?


I trying to demonstrate the concept in this problem, which is new to me, in a different example- I think the calculator's notation just makes it appear as 1.something^e even though that doesn't necessarily mean it's not an integer. It's clear now.


For big numbers do not user calculator (unless it's not advanced) or Excell, use Wolframalpha: https://www.wolframalpha.com/

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 139559 [1], given: 12794

Director
Director
avatar
S
Joined: 12 Nov 2016
Posts: 791

Kudos [?]: 39 [0], given: 166

Re: Let n~ be defined for all positive integers n as the remainder when (n [#permalink]

Show Tags

New post 27 Jun 2017, 15:09
shasadou wrote:
Let n~ be defined for all positive integers n as the remainder when (n - 1)! is divided by n.

What is the value of 32~ ?

A. 0
B. 1
C. 2
D. 8
E. 31


Simple- all this question is asking is if you have 31!/32 then what is the remainder? You don't necessarily have to expand 31!- 32 fits in because you have 16 and 2 so there is no remainder

Thus
"A"

Kudos [?]: 39 [0], given: 166

Verbal Forum Moderator
User avatar
P
Joined: 19 Mar 2014
Posts: 979

Kudos [?]: 273 [0], given: 199

Location: India
Concentration: Finance, Entrepreneurship
GPA: 3.5
GMAT ToolKit User Premium Member CAT Tests
Re: Let n~ be defined for all positive integers n as the remainder when (n [#permalink]

Show Tags

New post 09 Jul 2017, 03:12
shasadou wrote:
Let n~ be defined for all positive integers n as the remainder when (n - 1)! is divided by n.

What is the value of 32~ ?

A. 0
B. 1
C. 2
D. 8
E. 31



\(= \frac{(32-1)!}{32}\)

\(= \frac{31!}{32}\)

Numbers \(8 * 4 = 32\), will cancel out the denomintor and hence the reminder will be ZERO.

Hence, Answer is A
_________________

"Nothing in this world can take the place of persistence. Talent will not: nothing is more common than unsuccessful men with talent. Genius will not; unrewarded genius is almost a proverb. Education will not: the world is full of educated derelicts. Persistence and determination alone are omnipotent."

Worried About IDIOMS? Here is a Daily Practice List: https://gmatclub.com/forum/idiom-s-ydmuley-s-daily-practice-list-250731.html#p1937393

Best AWA Template: https://gmatclub.com/forum/how-to-get-6-0-awa-my-guide-64327.html#p470475

Kudos [?]: 273 [0], given: 199

Study Buddy Forum Moderator
avatar
P
Joined: 04 Sep 2016
Posts: 583

Kudos [?]: 140 [0], given: 321

Location: India
WE: Engineering (Other)
Premium Member CAT Tests
Let n~ be defined for all positive integers n as the remainder when (n [#permalink]

Show Tags

New post 10 Nov 2017, 03:20
Bunuel VeritasPrepKarishma

32! has various multiples of 32 built in say 8 * 4, 16* 2. Will not various no of multiples affect my remainder?
For eg, even if 8*4 will cancel out 32 in denominator leaving remainder = 0, I still have one multiple of 16*2, correct?

Kudos [?]: 140 [0], given: 321

Expert Post
Target Test Prep Representative
User avatar
S
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 1821

Kudos [?]: 1050 [0], given: 5

Re: Let n~ be defined for all positive integers n as the remainder when (n [#permalink]

Show Tags

New post 14 Nov 2017, 06:08
shasadou wrote:
Let n~ be defined for all positive integers n as the remainder when (n - 1)! is divided by n.

What is the value of 32~ ?

A. 0
B. 1
C. 2
D. 8
E. 31


32~ = (32 - 1)!/32 = 31!/32 = 31!/2^5

Since we can safely say that there are at least five 2s in 31! (for example, 31! has the factors 16 = 2^4 and 8=2^3), the remainder is zero.

Alternate Solution:

32~ = (32 - 1)!/32 = 31!/32 = 31!/2^5

We want to know the remainder when 31! is divided by 2^5. If we can establish that there are at least 5 factors of 2 in 31!, then we will know that 2^5 evenly divides into 31!, which means that the remainder would be 0. Let’s determine if we can find at least 5 twos in 31!:

31! = 31 x 30 x 29 x 28 x 27 x 26 x 25 x 24 x … x 1

31! = 31 x (2 x 15) x 29 x (2 X 2 x 14) x 27 x (2 x 13) x 25 x (2 x 2 x 2 x 3) x … x 1

Notice that we have found seven 2s, which is two more than what we needed. Thus, we know that 2^5 will evenly divide into 31!, leaving a remainder of 0.

Answer: A
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Kudos [?]: 1050 [0], given: 5

Intern
Intern
avatar
B
Joined: 18 Jun 2017
Posts: 44

Kudos [?]: 7 [0], given: 31

GMAT 1: 660 Q39 V40
GMAT 2: 700 Q45 V41
GMAT ToolKit User
Re: Let n~ be defined for all positive integers n as the remainder when (n [#permalink]

Show Tags

New post 30 Nov 2017, 22:24
Hi,

So basically as long as there are enough prime factor powers in the numerator to cancel out all the prime factor powers in the denominator, the remainder is 0 correct?

Kudos [?]: 7 [0], given: 31

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43334

Kudos [?]: 139559 [0], given: 12794

Re: Let n~ be defined for all positive integers n as the remainder when (n [#permalink]

Show Tags

New post 30 Nov 2017, 23:04
calappa1234 wrote:
Hi,

So basically as long as there are enough prime factor powers in the numerator to cancel out all the prime factor powers in the denominator, the remainder is 0 correct?


Yes. If the numerator contains the same (or more) primes as denominator and the (positive integer) powers of primes in the numerator are at least as big as the powers of the same primes in the denominator, then the result of the division will be an integer, so the remainder will be 0.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 139559 [0], given: 12794

Re: Let n~ be defined for all positive integers n as the remainder when (n   [#permalink] 30 Nov 2017, 23:04
Display posts from previous: Sort by

Let n~ be defined for all positive integers n as the remainder when (n

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.