GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 21 Jan 2019, 02:14

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in January
PrevNext
SuMoTuWeThFrSa
303112345
6789101112
13141516171819
20212223242526
272829303112
Open Detailed Calendar
  • GMAT Club Tests are Free & Open for Martin Luther King Jr.'s Birthday!

     January 21, 2019

     January 21, 2019

     10:00 PM PST

     11:00 PM PST

    Mark your calendars - All GMAT Club Tests are free and open January 21st for celebrate Martin Luther King Jr.'s Birthday.
  • The winners of the GMAT game show

     January 22, 2019

     January 22, 2019

     10:00 PM PST

     11:00 PM PST

    In case you didn’t notice, we recently held the 1st ever GMAT game show and it was awesome! See who won a full GMAT course, and register to the next one.

Obtain the sum of all positive integers up to 1000, which

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Manager
Manager
avatar
Joined: 23 Mar 2008
Posts: 214
Obtain the sum of all positive integers up to 1000, which  [#permalink]

Show Tags

New post 08 Jun 2008, 11:05
11
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

70% (02:18) correct 30% (02:16) wrong based on 429 sessions

HideShow timer Statistics

Obtain the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2.

A. 10,050
B. 5,050
C. 5,000
D. 50,000
E. 55,000
Current Student
avatar
Joined: 28 Dec 2004
Posts: 3222
Location: New York City
Schools: Wharton'11 HBS'12
Re: sum of positive integers  [#permalink]

Show Tags

New post 08 Jun 2008, 11:32
1
puma wrote:
Obtain the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2.

a) 10050
b) 5050
c) 5000
d) 50000
e) 55000


last term thats not divisble by 10

995=5+(n-1)10

995=5+10n-10
1000=10n
n=100

sum= 100/2(10+(100-1)10)

this give us 50,000.

D it is
Director
Director
avatar
Joined: 01 Jan 2008
Posts: 593
Re: sum of positive integers  [#permalink]

Show Tags

New post 10 Jun 2008, 12:02
the answer is sum of 5*k - sum of 10*n

5 + ... + 1000 = (5+1000)*200/2 = 1,005*100 = 100,500

10 + .. + 1000 = (10+1000)*100/2 = 1,010*50 = 50,500

the answer is 100,500-50,500 = 50,000 -> D
SVP
SVP
User avatar
Joined: 30 Apr 2008
Posts: 1820
Location: Oklahoma City
Schools: Hard Knocks
Re: sum of positive integers  [#permalink]

Show Tags

New post 10 Jun 2008, 12:12
D (which is clearly established by now;) )

The way I figured it was this way.

Multipe of 5 is 5, 10, 15, 20, etc. Those not divisible by 2 are 5, 15, 25, 35, etc.

So, there will be 1 number to include for every 10, so 1000 numbers / 10 = 100 numbers to include in the sum.

If you look at 5 + 995 = 1000, 15 + 985 = 1000, 25 + 975=1000, 35 + 965 = 1000...495+505=1000, You do this, then you have 50 pairs that add up to be 1000, so 50 * 1000 = 50,000 (i.e. D)

I tend to see things in patterns rather than formulas.
_________________

------------------------------------
J Allen Morris
**I'm pretty sure I'm right, but then again, I'm just a guy with his head up his a$$.

GMAT Club Premium Membership - big benefits and savings

Senior Manager
Senior Manager
User avatar
Joined: 12 Apr 2008
Posts: 494
Location: Eastern Europe
Schools: Oxford
Re: sum of positive integers  [#permalink]

Show Tags

New post 10 Jun 2008, 12:57
2
2
Hi!

For those who asked to explain the formula:

For arithmetic progression,

Sn = n*(a1+an)/2

Our series is 5, 15, 25, … , 995. (a1=5, an=995, d=10).

Only, we need to calculate n. In order to find it, we can use the formula an = a1+(n-1)*d – just put in numbers and solve for n.
Intern
Intern
avatar
Joined: 25 Jun 2008
Posts: 12
Re: sum of positive integers  [#permalink]

Show Tags

New post 02 Jul 2008, 03:48
There are 200 no's divisible by 5 upto 1000 and out of this only 100 nos are not divisible by 2. So the sum we need is (5+15+....+995) or 5(1+3+5+....199). The sum of consequtive n integers is n^2. Therefe for sum of 100 odd nos is 100^2.

Ans = 5 (100^2)=50000 .D
Current Student
User avatar
Joined: 12 Jun 2008
Posts: 286
Schools: INSEAD Class of July '10
Re: sum of positive integers  [#permalink]

Show Tags

New post 02 Jul 2008, 04:04
bajaj wrote:
So the sum we need is (5+15+....+995) or 5(1+3+5+....199). The sum of consequtive n integers is n^2.

In your example, 1,3,5,..,199 are not consecutive integers ;) (and I don't see where this results "n^2" come from).

What you can write is that the number we look for is

\(\sum_{k=1 and k is odd}^{200} 5*k = \sum_{i=0}^{99} 5(2i+1) = 5 \left( \sum_{i=0}^{99} 2i + \sum_{i=0}^{99} 1 \right) = 5 \left( 2 \sum_{i=0}^{99} i + 100 \right) = 5 \left( 2 \frac{99*100}{2} + 100 \right) = 5 \left( 9,900 + 100 \right) = 50,000\)
Intern
Intern
avatar
Joined: 25 May 2008
Posts: 39
Re: sum of positive integers  [#permalink]

Show Tags

New post 02 Jul 2008, 08:36
5,15,25,.....,995
total terms = 100

sum = n/2 [2a + (n-1)d]

n = 100
a = 5
d = 10

Sum = 50000

D is the answer.
Manager
Manager
avatar
Joined: 27 Jul 2010
Posts: 154
Location: Prague
Schools: University of Economics Prague
GMAT ToolKit User
Re: sum of positive integers  [#permalink]

Show Tags

New post 03 Feb 2011, 05:47
2
5+15+25+...+995=
1*5+3*5+5*5+...+199*5=
5*(1+3+5+...+199)

Sum of first n odd numbers: \(n^2\)

#of odd numbers: \(n=\frac{(199-1)}{2}+1 = \frac{199-1+2}{2}=100\)

5*100*100=50000
_________________

You want somethin', go get it. Period!

Senior Manager
Senior Manager
avatar
Status: Up again.
Joined: 31 Oct 2010
Posts: 492
Concentration: Strategy, Operations
GMAT 1: 710 Q48 V40
GMAT 2: 740 Q49 V42
Re: sum of positive integers  [#permalink]

Show Tags

New post 03 Feb 2011, 07:41
1
puma wrote:
Obtain the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2.

a) 10050
b) 5050
c) 5000
d) 50000
e) 55000


My approach:

Step 1: Find out the sum of all integers divisible by 5. Number of such terms= \(\frac{(1000-0)}{5} + 1= 201\). Sum of all such integers= \(201*500\) (using the sum formula of terms in Arithmetic Progression).. (i)
Step 2: Find out the sum of all integers divisible by 10: Number of such terms= \(\frac{(1000-0)}{10}= 101\). Sum of all such integers= \(101*500= 101*500\) .. (ii)

Now, the multiples of 10 are the ones which are divisible by both 5 and 2. Therefore, we need to subtract (ii) by (i) to arrive at the terms divisible only by 5 and not by 2

Step 3: \(201*500 - 101*500\)
= \(500*(201-101)\)
= \(500*100\)
= \(50,000\). Answer.

Thus, the answer is D.
_________________

My GMAT debrief: http://gmatclub.com/forum/from-620-to-710-my-gmat-journey-114437.html

Senior Manager
Senior Manager
avatar
Status: Up again.
Joined: 31 Oct 2010
Posts: 492
Concentration: Strategy, Operations
GMAT 1: 710 Q48 V40
GMAT 2: 740 Q49 V42
Re: sum of positive integers  [#permalink]

Show Tags

New post 03 Feb 2011, 07:58
greenoak wrote:
Hi!

For those who asked to explain the formula:

For arithmetic progression,

Sn = n*(a1+an)/2

Our series is 5, 15, 25, … , 995. (a1=5, an=995, d=10).

Only, we need to calculate n. In order to find it, we can use the formula an = a1+(n-1)*d – just put in numbers and solve for n.


This is the quickest approach IMO. you really dont need anything else!
+1
_________________

My GMAT debrief: http://gmatclub.com/forum/from-620-to-710-my-gmat-journey-114437.html

Retired Moderator
avatar
Joined: 20 Dec 2010
Posts: 1809
Re: sum of positive integers  [#permalink]

Show Tags

New post 04 Feb 2011, 07:50
1
Sequence is: 5,15,25,....995

Common difference d = 10
Number of elements: ((995-5)/10)+1=100
Average: (first+last)/2 = (5+995)/2 = 500

Sum= Number of elements * Average = 100 * 500 = 50000

Ans: "D"
_________________

~fluke

GMAT Club Premium Membership - big benefits and savings

Intern
Intern
avatar
Joined: 04 Aug 2013
Posts: 28
Concentration: Finance, Real Estate
GMAT 1: 740 Q47 V46
GPA: 3.23
WE: Consulting (Real Estate)
Re: Obtain the sum of all positive integers up to 1000, which  [#permalink]

Show Tags

New post 13 Jan 2014, 18:25
100 possibilities, evenly spaced by 10. Since its an evenly spaced set, the median (500) is also the mean. Find the median: will be the average between the 50th observation (495) and the 51st observation (505), which is 500. Average * number of observations == total. 500*100 is 50,0000.
Intern
Intern
avatar
Joined: 13 Aug 2013
Posts: 3
Re: sum of positive integers  [#permalink]

Show Tags

New post 05 Feb 2014, 21:17
gmatpapa wrote:
puma wrote:
Obtain the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2.

a) 10050
b) 5050
c) 5000
d) 50000
e) 55000


My approach:

Step 1: Find out the sum of all integers divisible by 5. Number of such terms= \(\frac{(1000-0)}{5} + 1= 201\). Sum of all such integers= \(201*500\) (using the sum formula of terms in Arithmetic Progression).. (i)
Step 2: Find out the sum of all integers divisible by 10: Number of such terms= \(\frac{(1000-0)}{10}= 101\). Sum of all such integers= \(101*500= 101*500\) .. (ii)

Now, the multiples of 10 are the ones which are divisible by both 5 and 2. Therefore, we need to subtract (ii) by (i) to arrive at the terms divisible only by 5 and not by 2

Step 3: \(201*500 - 101*500\)
= \(500*(201-101)\)
= \(500*100\)
= \(50,000\). Answer.

Thus, the answer is D.


Can u explain in brief why do you multiply by 500. Thank you

Posted from my mobile device
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 52327
Re: sum of positive integers  [#permalink]

Show Tags

New post 05 Feb 2014, 22:53
nishanthadithya wrote:
gmatpapa wrote:
puma wrote:
Obtain the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2.

a) 10050
b) 5050
c) 5000
d) 50000
e) 55000


My approach:

Step 1: Find out the sum of all integers divisible by 5. Number of such terms= \(\frac{(1000-0)}{5} + 1= 201\). Sum of all such integers= \(201*500\) (using the sum formula of terms in Arithmetic Progression).. (i)
Step 2: Find out the sum of all integers divisible by 10: Number of such terms= \(\frac{(1000-0)}{10}= 101\). Sum of all such integers= \(101*500= 101*500\) .. (ii)

Now, the multiples of 10 are the ones which are divisible by both 5 and 2. Therefore, we need to subtract (ii) by (i) to arrive at the terms divisible only by 5 and not by 2

Step 3: \(201*500 - 101*500\)
= \(500*(201-101)\)
= \(500*100\)
= \(50,000\). Answer.

Thus, the answer is D.


Can u explain in brief why do you multiply by 500. Thank you

Posted from my mobile device


For every evenly spaced set (a.k.a. arithmetic progression), the sum equals to (mean)*(# of terms). 500 is the mean there: (mean)=(first+last)/2=(5+995)/2=500.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

CEO
CEO
User avatar
P
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2726
Location: India
GMAT: INSIGHT
Schools: Darden '21
WE: Education (Education)
Reviews Badge
Re: Obtain the sum of all positive integers up to 1000, which  [#permalink]

Show Tags

New post 05 Feb 2016, 06:37
puma wrote:
Obtain the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2.

A. 10,050
B. 5,050
C. 5,000
D. 50,000
E. 55,000


Total Multiples of 5 from 1 through 1000 = 1000/5 = 200

Half of these 200 multiples of 5 will be even (i.e. divisible by 2) and remaining half will be odd multiples of 5

i.e. Question : 5+15+25+......+955=?

Since it's an Arithmetic Progression (In which difference between any two consecutive terms remain constant) in which sum of first and last term = Sum of second and Second last term = and so on...

100 such numbers i.e.e 50 such pairs and sum of each pair = 5+955 = 1000

i.e. Sum of all pairs = (100/2)*(5+955) = 50*1000 = 50,000

Answer: Option D
_________________

Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

ACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION

Current Student
User avatar
D
Joined: 12 Aug 2015
Posts: 2626
Schools: Boston U '20 (M)
GRE 1: Q169 V154
GMAT ToolKit User Premium Member
Re: Obtain the sum of all positive integers up to 1000, which  [#permalink]

Show Tags

New post 13 Mar 2016, 23:59
Intern
Intern
User avatar
B
Joined: 10 Dec 2015
Posts: 26
GMAT 1: 680 Q45 V38
Obtain the sum of all positive integers up to 1000, which  [#permalink]

Show Tags

New post 06 Dec 2017, 21:59
Let's first try to figure out what the problem's actually asking us.
Numbers divisible by 5 mean the set : {5,10,15,....,1000}
Numbers divisible by 5 and 2 mean the set : {10,20,30,...,1000}
OUR CRITERION: divisible by 5 and not divisible by 2
So, the set we need to work with is : {5,15,25,35,...995}
This is a generic arithmetic progression problem, where the common difference is 10 and number of numbers is 100*, so we can easily apply the formula,

s=n/2*{2a+(n-1)d} where s=sum of numbers, n=number of numbers a=first term and d=common difference
So, s=100/2*{2*5+(100-1)*10}=50,000 ...OPTION D

*number of numbers is 100 because between 1-10, we have only one number, i.e. 5, now multiply it to our total 1-1000, i.e. 100.
_________________

-Please give me KUDOS, if my posts help you in anyway.
-Please PM me any doubts which you might have, and I will do my level best to help. :)

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 9457
Premium Member
Re: Obtain the sum of all positive integers up to 1000, which  [#permalink]

Show Tags

New post 23 Dec 2018, 04:01
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

GMAT Club Bot
Re: Obtain the sum of all positive integers up to 1000, which &nbs [#permalink] 23 Dec 2018, 04:01
Display posts from previous: Sort by

Obtain the sum of all positive integers up to 1000, which

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.