It is currently 14 Dec 2017, 13:06

Decision(s) Day!:

CHAT Rooms | Wharton R1 | Stanford R1 | Tuck R1 | Ross R1 | Haas R1 | UCLA R1


Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

S98-20

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42607

Kudos [?]: 135655 [0], given: 12705

S98-20 [#permalink]

Show Tags

New post 16 Sep 2014, 00:53
Expert's post
3
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

32% (02:23) correct 68% (03:55) wrong based on 63 sessions

HideShow timer Statistics

Kudos [?]: 135655 [0], given: 12705

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42607

Kudos [?]: 135655 [1], given: 12705

Re S98-20 [#permalink]

Show Tags

New post 16 Sep 2014, 00:53
1
This post received
KUDOS
Expert's post
Official Solution:


Approximately what percent of the area of the circle shown is shaded, if polygon ABCDEF is a regular hexagon?

Image


A. 24%
B. 30%
C. 36%
D. 42%
E. 48%


If polygon \(ABCDEF\) is a regular hexagon, then the figure is very symmetrical and actually looks like the drawing. We should avoid rigorous proofs and instead make quick arguments "from symmetry" - that is, recognizing that many parts of the diagram are equivalent.

We know that for the hexagon, each side is the same length and each interior angle is the same. Since the interior angles of a hexagon sum up to \(180(n - 2)^\circ = 180(6 - 2)^\circ = 720^\circ\), and there are 6 interior, equal angles, then each of those angles must measure \(\frac{720^\circ}{6} = 120^\circ\).

Moreover, each side of the hexagon is equal in length to the radius, since any regular hexagon can be chopped up into 6 smaller equilateral triangles, as shown by the lines in blue through the circle's center \(O\):

Image

Consider small triangle \(AXB\). The hypotenuse of this right triangle, \(AB\), has length \(r\). Angle \(ABO\) is \(60^\circ\), so \(AXB\) is a 30-60-90 triangle. This means that \(XB\) is \(\frac{r}{2}\) in length, and \(AX\) is \(\frac{\sqrt{3}r}{4}\) in length. Since \(AX\) and \(XB\) are the same length (by symmetry), \(AC\) is \(\sqrt{3}r\) in length.

This means that the area of triangle \(ABC\) is \(\frac{1}{2} \leftarrow( \sqrt{3}r \rightarrow) \leftarrow( \frac{r}{4} \rightarrow) = \frac{\sqrt{3} r^2}{4}\). Since there are three shaded triangles in all (including \(ABC\)), the total shaded area is \(\frac{3 \sqrt{3} r^2}{4}\). The area of the circle is , so the ratio of the shaded area to the area of the circle is given by
\(\frac{3 \sqrt{3} r^2}{4} \div \pi r^2 = \frac{3 \sqrt{3}}{4 \pi} \approx \frac{\sqrt{3}}{4} \approx \frac{1.7}{4} \approx 0.43\)

The closest answer is 42%.


Answer: D
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135655 [1], given: 12705

Intern
Intern
User avatar
Joined: 07 Sep 2014
Posts: 24

Kudos [?]: 18 [0], given: 6

Location: United States (MA)
Concentration: Finance, Economics
Premium Member
Re: S98-20 [#permalink]

Show Tags

New post 10 Oct 2014, 15:25
Bunuel wrote:
Official Solution:


Approximately what percent of the area of the circle shown is shaded, if polygon ABCDEF is a regular hexagon?



A. 24%
B. 30%
C. 36%
D. 42%
E. 48%


If polygon \(ABCDEF\) is a regular hexagon, then the figure is very symmetrical and actually looks like the drawing. We should avoid rigorous proofs and instead make quick arguments "from symmetry" - that is, recognizing that many parts of the diagram are equivalent.

We know that for the hexagon, each side is the same length and each interior angle is the same. Since the interior angles of a hexagon sum up to \(180(n - 2)^\circ = 180(6 - 2)^\circ = 720^\circ\), and there are 6 interior, equal angles, then each of those angles must measure \(\frac{720^\circ}{6} = 120^\circ\).

Moreover, each side of the hexagon is equal in length to the radius, since any regular hexagon can be chopped up into 6 smaller equilateral triangles, as shown by the lines in blue through the circle's center \(O\):


Consider small triangle \(AXB\). The hypotenuse of this right triangle, \(AB\), has length \(r\). Angle \(ABO\) is \(60^\circ\), so \(AXB\) is a 30-60-90 triangle. This means that \(XB\) is \(\frac{r}{2}\) in length, and \(AX\) is \(\frac{\sqrt{3}r}{4}\) in length. Since \(AX\) and \(XB\) are the same length (by symmetry), \(AC\) is \(\sqrt{3}r\) in length.

This means that the area of triangle \(ABC\) is \(\frac{1}{2} \leftarrow( \sqrt{3}r \rightarrow) \leftarrow( \frac{r}{4} \rightarrow) = \frac{\sqrt{3} r^2}{4}\). Since there are three shaded triangles in all (including \(ABC\)), the total shaded area is \(\frac{3 \sqrt{3} r^2}{4}\). The area of the circle is , so the ratio of the shaded area to the area of the circle is given by
\(\frac{3 \sqrt{3} r^2}{4} \div \pi r^2 = \frac{3 \sqrt{3}}{4 \pi} \approx \frac{\sqrt{3}}{4} \approx \frac{1.7}{4} \approx 0.43\)

The closest answer is 42%.


Answer: D


Bunuel,

I am confused at the step in which you derive the height side of the first 30-60-90 triangle. the "x" side is r/2, because the "2x" side is r, but why is "x sqrt 3" side not = to (r sqrt 3)/2? instead you have it divided by 4? I must be missing something. You also say that side AX = XB? That can't be because we just found it to be a 30-60-90 right triangle. You must've meant to say that AX = AX, thus we know AC?

Kudos [?]: 18 [0], given: 6

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42607

Kudos [?]: 135655 [0], given: 12705

Re: S98-20 [#permalink]

Show Tags

New post 11 Oct 2014, 12:28
bsmith37 wrote:
Bunuel wrote:
Official Solution:


Approximately what percent of the area of the circle shown is shaded, if polygon ABCDEF is a regular hexagon?



A. 24%
B. 30%
C. 36%
D. 42%
E. 48%


If polygon \(ABCDEF\) is a regular hexagon, then the figure is very symmetrical and actually looks like the drawing. We should avoid rigorous proofs and instead make quick arguments "from symmetry" - that is, recognizing that many parts of the diagram are equivalent.

We know that for the hexagon, each side is the same length and each interior angle is the same. Since the interior angles of a hexagon sum up to \(180(n - 2)^\circ = 180(6 - 2)^\circ = 720^\circ\), and there are 6 interior, equal angles, then each of those angles must measure \(\frac{720^\circ}{6} = 120^\circ\).

Moreover, each side of the hexagon is equal in length to the radius, since any regular hexagon can be chopped up into 6 smaller equilateral triangles, as shown by the lines in blue through the circle's center \(O\):


Consider small triangle \(AXB\). The hypotenuse of this right triangle, \(AB\), has length \(r\). Angle \(ABO\) is \(60^\circ\), so \(AXB\) is a 30-60-90 triangle. This means that \(XB\) is \(\frac{r}{2}\) in length, and \(AX\) is \(\frac{\sqrt{3}r}{4}\) in length. Since \(AX\) and \(XB\) are the same length (by symmetry), \(AC\) is \(\sqrt{3}r\) in length.

This means that the area of triangle \(ABC\) is \(\frac{1}{2} \leftarrow( \sqrt{3}r \rightarrow) \leftarrow( \frac{r}{4} \rightarrow) = \frac{\sqrt{3} r^2}{4}\). Since there are three shaded triangles in all (including \(ABC\)), the total shaded area is \(\frac{3 \sqrt{3} r^2}{4}\). The area of the circle is , so the ratio of the shaded area to the area of the circle is given by
\(\frac{3 \sqrt{3} r^2}{4} \div \pi r^2 = \frac{3 \sqrt{3}}{4 \pi} \approx \frac{\sqrt{3}}{4} \approx \frac{1.7}{4} \approx 0.43\)

The closest answer is 42%.


Answer: D


Bunuel,

I am confused at the step in which you derive the height side of the first 30-60-90 triangle. the "x" side is r/2, because the "2x" side is r, but why is "x sqrt 3" side not = to (r sqrt 3)/2? instead you have it divided by 4? I must be missing something. You also say that side AX = XB? That can't be because we just found it to be a 30-60-90 right triangle. You must've meant to say that AX = AX, thus we know AC?


The following discussion might help: approximately-what-percent-of-the-area-of-the-circle-shown-i-169744.html
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135655 [0], given: 12705

Intern
Intern
User avatar
Joined: 07 Sep 2014
Posts: 24

Kudos [?]: 18 [0], given: 6

Location: United States (MA)
Concentration: Finance, Economics
Premium Member
S98-20 [#permalink]

Show Tags

New post 11 Oct 2014, 14:57
Bunuel wrote:
bsmith37 wrote:
Bunuel wrote:
Official Solution:


Approximately what percent of the area of the circle shown is shaded, if polygon ABCDEF is a regular hexagon?



A. 24%
B. 30%
C. 36%
D. 42%
E. 48%


If polygon \(ABCDEF\) is a regular hexagon, then the figure is very symmetrical and actually looks like the drawing. We should avoid rigorous proofs and instead make quick arguments "from symmetry" - that is, recognizing that many parts of the diagram are equivalent.

We know that for the hexagon, each side is the same length and each interior angle is the same. Since the interior angles of a hexagon sum up to \(180(n - 2)^\circ = 180(6 - 2)^\circ = 720^\circ\), and there are 6 interior, equal angles, then each of those angles must measure \(\frac{720^\circ}{6} = 120^\circ\).

Moreover, each side of the hexagon is equal in length to the radius, since any regular hexagon can be chopped up into 6 smaller equilateral triangles, as shown by the lines in blue through the circle's center \(O\):


Consider small triangle \(AXB\). The hypotenuse of this right triangle, \(AB\), has length \(r\). Angle \(ABO\) is \(60^\circ\), so \(AXB\) is a 30-60-90 triangle. This means that \(XB\) is \(\frac{r}{2}\) in length, and \(AX\) is \(\frac{\sqrt{3}r}{4}\) in length. Since \(AX\) and \(XB\) are the same length (by symmetry), \(AC\) is \(\sqrt{3}r\) in length.

This means that the area of triangle \(ABC\) is \(\frac{1}{2} \leftarrow( \sqrt{3}r \rightarrow) \leftarrow( \frac{r}{4} \rightarrow) = \frac{\sqrt{3} r^2}{4}\). Since there are three shaded triangles in all (including \(ABC\)), the total shaded area is \(\frac{3 \sqrt{3} r^2}{4}\). The area of the circle is , so the ratio of the shaded area to the area of the circle is given by
\(\frac{3 \sqrt{3} r^2}{4} \div \pi r^2 = \frac{3 \sqrt{3}}{4 \pi} \approx \frac{\sqrt{3}}{4} \approx \frac{1.7}{4} \approx 0.43\)

The closest answer is 42%.


Answer: D


Bunuel,

I am confused at the step in which you derive the height side of the first 30-60-90 triangle. the "x" side is r/2, because the "2x" side is r, but why is "x sqrt 3" side not = to (r sqrt 3)/2? instead you have it divided by 4? I must be missing something. You also say that side AX = XB? That can't be because we just found it to be a 30-60-90 right triangle. You must've meant to say that AX = AX, thus we know AC?


The following discussion might help: approximately-what-percent-of-the-area-of-the-circle-shown-i-169744.html


that link was helpful, but now I'm just trying to tie it back in with your slightly alternative explanation above. Still, i cannot see why you say that AX = \(\frac{\sqrt{3}r}{4}\) because we have an equilateral triangle (AOB), with sides R, and height AX. The formula states that the height AX would be \(\frac{\sqrt{3}r}{2}\). Please advise.

Kudos [?]: 18 [0], given: 6

Manager
Manager
avatar
Joined: 12 May 2013
Posts: 80

Kudos [?]: 43 [0], given: 12

Re: S98-20 [#permalink]

Show Tags

New post 23 Dec 2014, 23:42
Bunuel wrote:
Official Solution:


Approximately what percent of the area of the circle shown is shaded, if polygon ABCDEF is a regular hexagon?

Image


A. 24%
B. 30%
C. 36%
D. 42%
E. 48%


If polygon \(ABCDEF\) is a regular hexagon, then the figure is very symmetrical and actually looks like the drawing. We should avoid rigorous proofs and instead make quick arguments "from symmetry" - that is, recognizing that many parts of the diagram are equivalent.

We know that for the hexagon, each side is the same length and each interior angle is the same. Since the interior angles of a hexagon sum up to \(180(n - 2)^\circ = 180(6 - 2)^\circ = 720^\circ\), and there are 6 interior, equal angles, then each of those angles must measure \(\frac{720^\circ}{6} = 120^\circ\).

Moreover, each side of the hexagon is equal in length to the radius, since any regular hexagon can be chopped up into 6 smaller equilateral triangles, as shown by the lines in blue through the circle's center \(O\):

Image

Consider small triangle \(AXB\). The hypotenuse of this right triangle, \(AB\), has length \(r\). Angle \(ABO\) is \(60^\circ\), so \(AXB\) is a 30-60-90 triangle. This means that \(XB\) is \(\frac{r}{2}\) in length, and \(AX\) is \(\frac{\sqrt{3}r}{4}\) in length. Since \(AX\) and \(XB\) are the same length (by symmetry), \(AC\) is \(\sqrt{3}r\) in length.

This means that the area of triangle \(ABC\) is \(\frac{1}{2} \leftarrow( \sqrt{3}r \rightarrow) \leftarrow( \frac{r}{4} \rightarrow) = \frac{\sqrt{3} r^2}{4}\). Since there are three shaded triangles in all (including \(ABC\)), the total shaded area is \(\frac{3 \sqrt{3} r^2}{4}\). The area of the circle is , so the ratio of the shaded area to the area of the circle is given by
\(\frac{3 \sqrt{3} r^2}{4} \div \pi r^2 = \frac{3 \sqrt{3}}{4 \pi} \approx \frac{\sqrt{3}}{4} \approx \frac{1.7}{4} \approx 0.43\)

The closest answer is 42%.


Answer: D


Hey Bunuel,
I think the highlighted part above should be ax=xc.
and that is why it is creating a bit of confusion.

:)

Kudos [?]: 43 [0], given: 12

Intern
Intern
avatar
Joined: 17 Mar 2015
Posts: 1

Kudos [?]: [0], given: 7

Re S98-20 [#permalink]

Show Tags

New post 19 Feb 2016, 05:00
I think this is a high-quality question and I agree with explanation. There is a typo. AX equals (√3*r)/2, not (√3*r)/4 as it mentioned in the second line below the picture in the explanation. The rest is correct.

Kudos [?]: [0], given: 7

Manager
Manager
User avatar
S
Joined: 31 Jan 2017
Posts: 58

Kudos [?]: 35 [0], given: 17

Location: India
Concentration: Strategy, Leadership
GMAT 1: 680 Q49 V34
GPA: 4
WE: Project Management (Energy and Utilities)
Premium Member Reviews Badge
Re: S98-20 [#permalink]

Show Tags

New post 17 Feb 2017, 01:18
This is a great question.

Typo errors in the solution:

AX = √3 * r/2
AX and XC are same in length
Area of triangle ABC is 1/2 * (3√r) *(r/2) = (√3 * r^2 )/4
_________________

__________________________________
Kindly press "+1 Kudos" if the post helped :)

Kudos [?]: 35 [0], given: 17

Re: S98-20   [#permalink] 17 Feb 2017, 01:18
Display posts from previous: Sort by

S98-20

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Moderators: chetan2u, Bunuel



GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.