Oct 14 08:00 PM PDT  11:00 PM PDT Join a 4day FREE online boot camp to kick off your GMAT preparation and get you into your dream bschool in R2.**Limited for the first 99 registrants. Register today! Oct 15 12:00 PM PDT  01:00 PM PDT Join this live GMAT class with GMAT Ninja to learn to conquer your fears of long, kooky GMAT questions. Oct 16 08:00 PM PDT  09:00 PM PDT EMPOWERgmat is giving away the complete Official GMAT Exam Pack collection worth $100 with the 3 Month Pack ($299) Oct 19 07:00 AM PDT  09:00 AM PDT Does GMAT RC seem like an uphill battle? eGMAT is conducting a free webinar to help you learn reading strategies that can enable you to solve 700+ level RC questions with at least 90% accuracy in less than 10 days. Sat., Oct 19th at 7 am PDT Oct 20 07:00 AM PDT  09:00 AM PDT Get personalized insights on how to achieve your Target Quant Score.
Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 58335

Question Stats:
35% (02:14) correct 65% (03:35) wrong based on 75 sessions
HideShow timer Statistics
Approximately what percent of the area of the circle shown is shaded, if polygon ABCDEF is a regular hexagon? A. 24% B. 30% C. 36% D. 42% E. 48%
Official Answer and Stats are available only to registered users. Register/ Login.
_________________



Math Expert
Joined: 02 Sep 2009
Posts: 58335

Re S9820
[#permalink]
Show Tags
16 Sep 2014, 01:53
Official Solution: Approximately what percent of the area of the circle shown is shaded, if polygon ABCDEF is a regular hexagon? A. 24% B. 30% C. 36% D. 42% E. 48% If polygon \(ABCDEF\) is a regular hexagon, then the figure is very symmetrical and actually looks like the drawing. We should avoid rigorous proofs and instead make quick arguments "from symmetry"  that is, recognizing that many parts of the diagram are equivalent. We know that for the hexagon, each side is the same length and each interior angle is the same. Since the interior angles of a hexagon sum up to \(180(n  2)^\circ = 180(6  2)^\circ = 720^\circ\), and there are 6 interior, equal angles, then each of those angles must measure \(\frac{720^\circ}{6} = 120^\circ\). Moreover, each side of the hexagon is equal in length to the radius, since any regular hexagon can be chopped up into 6 smaller equilateral triangles, as shown by the lines in blue through the circle's center \(O\): Consider small triangle \(AXB\). The hypotenuse of this right triangle, \(AB\), has length \(r\). Angle \(ABO\) is \(60^\circ\), so \(AXB\) is a 306090 triangle. This means that \(XB\) is \(\frac{r}{2}\) in length, and \(AX\) is \(\frac{\sqrt{3}r}{4}\) in length. Since \(AX\) and \(XB\) are the same length (by symmetry), \(AC\) is \(\sqrt{3}r\) in length. This means that the area of triangle \(ABC\) is \(\frac{1}{2} \leftarrow( \sqrt{3}r \rightarrow) \leftarrow( \frac{r}{4} \rightarrow) = \frac{\sqrt{3} r^2}{4}\). Since there are three shaded triangles in all (including \(ABC\)), the total shaded area is \(\frac{3 \sqrt{3} r^2}{4}\). The area of the circle is , so the ratio of the shaded area to the area of the circle is given by \(\frac{3 \sqrt{3} r^2}{4} \div \pi r^2 = \frac{3 \sqrt{3}}{4 \pi} \approx \frac{\sqrt{3}}{4} \approx \frac{1.7}{4} \approx 0.43\) The closest answer is 42%. Answer: D
_________________



Intern
Joined: 07 Sep 2014
Posts: 17
Location: United States (MA)
Concentration: Finance, Economics

Re: S9820
[#permalink]
Show Tags
10 Oct 2014, 16:25
Bunuel wrote: Official Solution:
Approximately what percent of the area of the circle shown is shaded, if polygon ABCDEF is a regular hexagon?
A. 24% B. 30% C. 36% D. 42% E. 48%
If polygon \(ABCDEF\) is a regular hexagon, then the figure is very symmetrical and actually looks like the drawing. We should avoid rigorous proofs and instead make quick arguments "from symmetry"  that is, recognizing that many parts of the diagram are equivalent. We know that for the hexagon, each side is the same length and each interior angle is the same. Since the interior angles of a hexagon sum up to \(180(n  2)^\circ = 180(6  2)^\circ = 720^\circ\), and there are 6 interior, equal angles, then each of those angles must measure \(\frac{720^\circ}{6} = 120^\circ\). Moreover, each side of the hexagon is equal in length to the radius, since any regular hexagon can be chopped up into 6 smaller equilateral triangles, as shown by the lines in blue through the circle's center \(O\): Consider small triangle \(AXB\). The hypotenuse of this right triangle, \(AB\), has length \(r\). Angle \(ABO\) is \(60^\circ\), so \(AXB\) is a 306090 triangle. This means that \(XB\) is \(\frac{r}{2}\) in length, and \(AX\) is \(\frac{\sqrt{3}r}{4}\) in length. Since \(AX\) and \(XB\) are the same length (by symmetry), \(AC\) is \(\sqrt{3}r\) in length. This means that the area of triangle \(ABC\) is \(\frac{1}{2} \leftarrow( \sqrt{3}r \rightarrow) \leftarrow( \frac{r}{4} \rightarrow) = \frac{\sqrt{3} r^2}{4}\). Since there are three shaded triangles in all (including \(ABC\)), the total shaded area is \(\frac{3 \sqrt{3} r^2}{4}\). The area of the circle is , so the ratio of the shaded area to the area of the circle is given by \(\frac{3 \sqrt{3} r^2}{4} \div \pi r^2 = \frac{3 \sqrt{3}}{4 \pi} \approx \frac{\sqrt{3}}{4} \approx \frac{1.7}{4} \approx 0.43\) The closest answer is 42%.
Answer: D Bunuel, I am confused at the step in which you derive the height side of the first 306090 triangle. the "x" side is r/2, because the "2x" side is r, but why is "x sqrt 3" side not = to (r sqrt 3)/2? instead you have it divided by 4? I must be missing something. You also say that side AX = XB? That can't be because we just found it to be a 306090 right triangle. You must've meant to say that AX = AX, thus we know AC?



Math Expert
Joined: 02 Sep 2009
Posts: 58335

Re: S9820
[#permalink]
Show Tags
11 Oct 2014, 13:28
bsmith37 wrote: Bunuel wrote: Official Solution:
Approximately what percent of the area of the circle shown is shaded, if polygon ABCDEF is a regular hexagon?
A. 24% B. 30% C. 36% D. 42% E. 48%
If polygon \(ABCDEF\) is a regular hexagon, then the figure is very symmetrical and actually looks like the drawing. We should avoid rigorous proofs and instead make quick arguments "from symmetry"  that is, recognizing that many parts of the diagram are equivalent. We know that for the hexagon, each side is the same length and each interior angle is the same. Since the interior angles of a hexagon sum up to \(180(n  2)^\circ = 180(6  2)^\circ = 720^\circ\), and there are 6 interior, equal angles, then each of those angles must measure \(\frac{720^\circ}{6} = 120^\circ\). Moreover, each side of the hexagon is equal in length to the radius, since any regular hexagon can be chopped up into 6 smaller equilateral triangles, as shown by the lines in blue through the circle's center \(O\): Consider small triangle \(AXB\). The hypotenuse of this right triangle, \(AB\), has length \(r\). Angle \(ABO\) is \(60^\circ\), so \(AXB\) is a 306090 triangle. This means that \(XB\) is \(\frac{r}{2}\) in length, and \(AX\) is \(\frac{\sqrt{3}r}{4}\) in length. Since \(AX\) and \(XB\) are the same length (by symmetry), \(AC\) is \(\sqrt{3}r\) in length. This means that the area of triangle \(ABC\) is \(\frac{1}{2} \leftarrow( \sqrt{3}r \rightarrow) \leftarrow( \frac{r}{4} \rightarrow) = \frac{\sqrt{3} r^2}{4}\). Since there are three shaded triangles in all (including \(ABC\)), the total shaded area is \(\frac{3 \sqrt{3} r^2}{4}\). The area of the circle is , so the ratio of the shaded area to the area of the circle is given by \(\frac{3 \sqrt{3} r^2}{4} \div \pi r^2 = \frac{3 \sqrt{3}}{4 \pi} \approx \frac{\sqrt{3}}{4} \approx \frac{1.7}{4} \approx 0.43\) The closest answer is 42%.
Answer: D Bunuel, I am confused at the step in which you derive the height side of the first 306090 triangle. the "x" side is r/2, because the "2x" side is r, but why is "x sqrt 3" side not = to (r sqrt 3)/2? instead you have it divided by 4? I must be missing something. You also say that side AX = XB? That can't be because we just found it to be a 306090 right triangle. You must've meant to say that AX = AX, thus we know AC? The following discussion might help: approximatelywhatpercentoftheareaofthecircleshowni169744.html
_________________



Intern
Joined: 07 Sep 2014
Posts: 17
Location: United States (MA)
Concentration: Finance, Economics

Bunuel wrote: bsmith37 wrote: Bunuel wrote: Official Solution:
Approximately what percent of the area of the circle shown is shaded, if polygon ABCDEF is a regular hexagon?
A. 24% B. 30% C. 36% D. 42% E. 48%
If polygon \(ABCDEF\) is a regular hexagon, then the figure is very symmetrical and actually looks like the drawing. We should avoid rigorous proofs and instead make quick arguments "from symmetry"  that is, recognizing that many parts of the diagram are equivalent. We know that for the hexagon, each side is the same length and each interior angle is the same. Since the interior angles of a hexagon sum up to \(180(n  2)^\circ = 180(6  2)^\circ = 720^\circ\), and there are 6 interior, equal angles, then each of those angles must measure \(\frac{720^\circ}{6} = 120^\circ\). Moreover, each side of the hexagon is equal in length to the radius, since any regular hexagon can be chopped up into 6 smaller equilateral triangles, as shown by the lines in blue through the circle's center \(O\): Consider small triangle \(AXB\). The hypotenuse of this right triangle, \(AB\), has length \(r\). Angle \(ABO\) is \(60^\circ\), so \(AXB\) is a 306090 triangle. This means that \(XB\) is \(\frac{r}{2}\) in length, and \(AX\) is \(\frac{\sqrt{3}r}{4}\) in length. Since \(AX\) and \(XB\) are the same length (by symmetry), \(AC\) is \(\sqrt{3}r\) in length. This means that the area of triangle \(ABC\) is \(\frac{1}{2} \leftarrow( \sqrt{3}r \rightarrow) \leftarrow( \frac{r}{4} \rightarrow) = \frac{\sqrt{3} r^2}{4}\). Since there are three shaded triangles in all (including \(ABC\)), the total shaded area is \(\frac{3 \sqrt{3} r^2}{4}\). The area of the circle is , so the ratio of the shaded area to the area of the circle is given by \(\frac{3 \sqrt{3} r^2}{4} \div \pi r^2 = \frac{3 \sqrt{3}}{4 \pi} \approx \frac{\sqrt{3}}{4} \approx \frac{1.7}{4} \approx 0.43\) The closest answer is 42%.
Answer: D Bunuel, I am confused at the step in which you derive the height side of the first 306090 triangle. the "x" side is r/2, because the "2x" side is r, but why is "x sqrt 3" side not = to (r sqrt 3)/2? instead you have it divided by 4? I must be missing something. You also say that side AX = XB? That can't be because we just found it to be a 306090 right triangle. You must've meant to say that AX = AX, thus we know AC? The following discussion might help: approximatelywhatpercentoftheareaofthecircleshowni169744.htmlthat link was helpful, but now I'm just trying to tie it back in with your slightly alternative explanation above. Still, i cannot see why you say that AX = \(\frac{\sqrt{3}r}{4}\) because we have an equilateral triangle (AOB), with sides R, and height AX. The formula states that the height AX would be \(\frac{\sqrt{3}r}{2}\). Please advise.



Intern
Joined: 12 May 2013
Posts: 48

Re: S9820
[#permalink]
Show Tags
24 Dec 2014, 00:42
Bunuel wrote: Official Solution: Approximately what percent of the area of the circle shown is shaded, if polygon ABCDEF is a regular hexagon? A. 24% B. 30% C. 36% D. 42% E. 48% If polygon \(ABCDEF\) is a regular hexagon, then the figure is very symmetrical and actually looks like the drawing. We should avoid rigorous proofs and instead make quick arguments "from symmetry"  that is, recognizing that many parts of the diagram are equivalent. We know that for the hexagon, each side is the same length and each interior angle is the same. Since the interior angles of a hexagon sum up to \(180(n  2)^\circ = 180(6  2)^\circ = 720^\circ\), and there are 6 interior, equal angles, then each of those angles must measure \(\frac{720^\circ}{6} = 120^\circ\). Moreover, each side of the hexagon is equal in length to the radius, since any regular hexagon can be chopped up into 6 smaller equilateral triangles, as shown by the lines in blue through the circle's center \(O\): Consider small triangle \(AXB\). The hypotenuse of this right triangle, \(AB\), has length \(r\). Angle \(ABO\) is \(60^\circ\), so \(AXB\) is a 306090 triangle. This means that \(XB\) is \(\frac{r}{2}\) in length, and \(AX\) is \(\frac{\sqrt{3}r}{4}\) in length. Since \(AX\) and \(XB\) are the same length (by symmetry), \(AC\) is \(\sqrt{3}r\) in length. This means that the area of triangle \(ABC\) is \(\frac{1}{2} \leftarrow( \sqrt{3}r \rightarrow) \leftarrow( \frac{r}{4} \rightarrow) = \frac{\sqrt{3} r^2}{4}\). Since there are three shaded triangles in all (including \(ABC\)), the total shaded area is \(\frac{3 \sqrt{3} r^2}{4}\). The area of the circle is , so the ratio of the shaded area to the area of the circle is given by \(\frac{3 \sqrt{3} r^2}{4} \div \pi r^2 = \frac{3 \sqrt{3}}{4 \pi} \approx \frac{\sqrt{3}}{4} \approx \frac{1.7}{4} \approx 0.43\) The closest answer is 42%. Answer: D Hey Bunuel, I think the highlighted part above should be ax=xc. and that is why it is creating a bit of confusion.



Intern
Joined: 17 Mar 2015
Posts: 1

Re S9820
[#permalink]
Show Tags
19 Feb 2016, 06:00
I think this is a highquality question and I agree with explanation. There is a typo. AX equals (√3*r)/2, not (√3*r)/4 as it mentioned in the second line below the picture in the explanation. The rest is correct.



Manager
Joined: 31 Jan 2017
Posts: 56
Location: India
Concentration: Strategy, Leadership
GPA: 4
WE: Project Management (Energy and Utilities)

Re: S9820
[#permalink]
Show Tags
17 Feb 2017, 02:18
This is a great question. Typo errors in the solution: AX = √3 * r/2 AX and XC are same in length Area of triangle ABC is 1/2 * (3√r) *(r/2) = (√3 * r^2 )/4
_________________
__________________________________ Kindly press "+1 Kudos" if the post helped



Intern
Joined: 20 Jun 2015
Posts: 32
Location: India
Concentration: General Management, Operations
GPA: 2.91

Re: S9820
[#permalink]
Show Tags
04 Jan 2018, 02:59
I think we don't have to actually calculate and waste time in exam. Rather, we can simply see that if the area of triangle is "x" the highlighted area, when wrapped inside, is also "x". Hence, the total area becomes (2*Triangle area+Remaining area). Now we see clearly that the remaining area is a smaller area as compared to the area of triangle. Hence, Area of triangle can not be less than 33% (Option A&B goes out). At the same time, the area of Triangle can not be 50% or very close to 50%, since that would mean that remaining area is hardly 2% (Option E goes out). Now, If we choose 36% that would mean that remaining area is nearly equal to area of triangle, which is clearly not the case (Option C Goes out). The only remaining and sensible choice that remains is Option D.










