Author 
Message 
TAGS:

Hide Tags

Intern
Joined: 10 Jun 2012
Posts: 8

The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
Updated on: 09 Mar 2014, 05:49
Question Stats:
43% (01:48) correct 57% (01:34) wrong based on 497 sessions
HideShow timer Statistics
The number of water lilies on a certain lake doubles every two days. If there is exactly one water lily on the lake, it takes 60 days for the lake to be fully covered with water lilies. In how many days will the lake be fully covered with lilies, if initially there were two water lilies on it? (A) 15 (B) 28 (C) 30 (D) 58 (E) 59
Official Answer and Stats are available only to registered users. Register/ Login.
Originally posted by rainbooow on 21 Nov 2012, 21:18.
Last edited by Bunuel on 09 Mar 2014, 05:49, edited 1 time in total.
Added the OA.




Math Expert
Joined: 02 Sep 2009
Posts: 61189

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
22 Nov 2012, 04:18
nawaab wrote: rainbooow wrote: The number of water lilies on a certain lake doubles every two days. If there is exactly one water lily on the lake, it takes 60 days for the lake to be fully covered with water lilies. In how many days will the lake be fully covered with lilies, if initially there were two water lilies on it? (A) 15 (B) 28 (C) 30 (D) 58 (E) 59 My approach doesn't work Please, share your ideas! Starting from 1 Water Lilly it takes 60 days. If there are already two present, it can be taken as the first day is over. It will take 59 more days. Notice that we are told that "the number of water lilies on a certain lake doubles every two days", thus if initially there were two water lilies instead of one, we can consider that two days are over and therefore only 58 days are left. Answer: D. Similar question to practice: ittakes30daystofillalaboratorydishwithbacteria140269.htmlHope it helps.
_________________




Intern
Joined: 08 Apr 2012
Posts: 2
GMAT 1: 610 Q47 V27 GMAT 2: 710 Q50 V35

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
21 Nov 2012, 21:29
rainbooow wrote: The number of water lilies on a certain lake doubles every two days. If there is exactly one water lily on the lake, it takes 60 days for the lake to be fully covered with water lilies. In how many days will the lake be fully covered with lilies, if initially there were two water lilies on it? (A) 15 (B) 28 (C) 30 (D) 58 (E) 59 My approach doesn't work Please, share your ideas! Starting from 1 Water Lilly it takes 60 days. If there are already two present, it can be taken as the first day is over. It will take 59 more days.



Manager
Joined: 26 Dec 2011
Posts: 89

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
30 Nov 2012, 06:57
I understand the logic, but am not able to solve it algebraically.
since the series is in the geometric progression with the common ration (r) = 2, initial condition can be rewritten as:
a(n) = 1.2^601 {a(n = a.r^n1)} === which gives us total number of lillies in the pool ==>2^59.....no this is equated when the the pool starts with 2 lillies...==> 2^59 = 2.2^n1 ===>n=59..
Where am I going wrong?



Math Expert
Joined: 02 Sep 2009
Posts: 61189

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
30 Nov 2012, 08:53
pavanpuneet wrote: I understand the logic, but am not able to solve it algebraically.
since the series is in the geometric progression with the common ration (r) = 2, initial condition can be rewritten as:
a(n) = 1.2^601 {a(n = a.r^n1)} === which gives us total number of lillies in the pool ==>2^59.....no this is equated when the the pool starts with 2 lillies...==> 2^59 = 2.2^n1 ===>n=59..
Where am I going wrong? We are told that "the number of water lilies on a certain lake doubles every TWO days". If there are two lilies, then in order to cover the lake they would need to double one time less than in case with 1 lily. Since lilies double every two days, then 602=58 days are needed.
_________________



Manager
Joined: 24 Apr 2013
Posts: 50
Location: United States

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
08 Sep 2013, 06:33
Bunuel, would you please illustrate this question using the population formula rule used in the MGMAT. Thank you



Math Expert
Joined: 02 Sep 2009
Posts: 61189

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
08 Sep 2013, 06:43



Manager
Joined: 04 Apr 2013
Posts: 108

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
09 Mar 2014, 04:46
Bunuel or anyone,
Please confirm if my approach is correct.
Sum of lillies for 30 days using Geo Series: a= 1+2+2^2+2^3..2^30 (1) 2a = 2+2^2...2^31  (2) Subtract 1 from 2 a=2^31  1 (Total lillies in the pond)
Now let x be number of times, both lillies expanded at once lilly 1 > a=1+2+2^2...2^x sum of lilly 1 using Geo series described above = 2^x+1  1 lilly 2 > a=1+2+2^2....2^x sum of lilly 2 using Geo series described above = 2^x+1  1 > sum of lilly 1 + sum of lilly 2 = 2^31 1 so 2(2^x+1 1) = 2^31  1 2^x+2  2 = 2^31 1 approximately 2^x+2 = 2^31 x+2 = 31, x= 29 times ....so 58 days as lillies doubles evry 2 days



Math Expert
Joined: 02 Sep 2009
Posts: 61189

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
09 Mar 2014, 06:21
maaadhu wrote: Bunuel or anyone,
Please confirm if my approach is correct.
Sum of lillies for 30 days using Geo Series: a= 1+2+2^2+2^3..2^30 (1) 2a = 2+2^2...2^31  (2) Subtract 1 from 2 a=2^31  1 (Total lillies in the pond)
Now let x be number of times, both lillies expanded at once lilly 1 > a=1+2+2^2...2^x sum of lilly 1 using Geo series described above = 2^x+1  1 lilly 2 > a=1+2+2^2....2^x sum of lilly 2 using Geo series described above = 2^x+1  1 > sum of lilly 1 + sum of lilly 2 = 2^31 1 so 2(2^x+1 1) = 2^31  1 2^x+2  2 = 2^31 1 approximately 2^x+2 = 2^31 x+2 = 31, x= 29 times ....so 58 days as lillies doubles evry 2 days No, that's not correct. Neat algebraic manipulations though... Notice that the total number of lilies is not 1+2+2^2+2^3..2^30, it's 2^30. Initially = 1; After 2 days = 2, not 1+2; After 4 days = 2^2 = 4, not 1+2+4. ... After 60 days = 2^30, not 1+2+2^2+2^3+...+2^30. Similarly, if initially there are 2 lilies, then the total number would be 2*2^x. So, we'd have that 2^30 = 2*2^x > x = 29. Similar questions to practice: acertainbacteriacolonydoublesinsizeeverydayfor144013.htmlittakes30daystofillalaboratorydishwithbacteria140269.htmlacertaincultureofbacteriaquadrupleseveryhourifa52258.htmlthepopulationoflocustsinacertainswarmdoublesevery90353.htmlthepopulationofabacteriaculturedoublesevery2minutes167378.htmlHope it helps.
_________________



Manager
Joined: 04 Apr 2013
Posts: 108

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
09 Mar 2014, 18:38
Bunuel wrote: maaadhu wrote: Bunuel or anyone,
Please confirm if my approach is correct.
Sum of lillies for 30 days using Geo Series: a= 1+2+2^2+2^3..2^30 (1) 2a = 2+2^2...2^31  (2) Subtract 1 from 2 a=2^31  1 (Total lillies in the pond)
Now let x be number of times, both lillies expanded at once lilly 1 > a=1+2+2^2...2^x sum of lilly 1 using Geo series described above = 2^x+1  1 lilly 2 > a=1+2+2^2....2^x sum of lilly 2 using Geo series described above = 2^x+1  1 > sum of lilly 1 + sum of lilly 2 = 2^31 1 so 2(2^x+1 1) = 2^31  1 2^x+2  2 = 2^31 1 approximately 2^x+2 = 2^31 x+2 = 31, x= 29 times ....so 58 days as lillies doubles evry 2 days No, that's not correct. Neat algebraic manipulations though... Notice that the total number of lilies is not 1+2+2^2+2^3..2^30, it's 2^30. Initially = 1; After 2 days = 2, not 1+2; After 4 days = 2^2 = 4, not 1+2+4. ... After 60 days = 2^30, not 1+2+2^2+2^3+...+2^30. Similarly, if initially there are 2 lilies, then the total number would be 2*2^x. So, we'd have that 2^30 = 2*2^x > x = 29. Similar questions to practice: acertainbacteriacolonydoublesinsizeeverydayfor144013.htmlittakes30daystofillalaboratorydishwithbacteria140269.htmlacertaincultureofbacteriaquadrupleseveryhourifa52258.htmlthepopulationoflocustsinacertainswarmdoublesevery90353.htmlthepopulationofabacteriaculturedoublesevery2minutes167378.htmlHope it helps. Thank you Bunuel. My interpretation of question is incorrect.



Intern
Joined: 18 Feb 2014
Posts: 4

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
10 Jun 2014, 12:36
That is pretty easy one. Full = 60 days, knowing that the number of lilies doubles each 2 days we can deduce that the half of the lake was full at 58 days. Taking initial information that we have 2 lilies at day 1 we can just simply multiply 2 lilies by 1/2 of the lake which means that the lake will be full at 58 days.



Manager
Joined: 17 Jul 2013
Posts: 69

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
21 Jun 2014, 04:22
I thought this way : 30 days will take to complete the pond with lillies count as 2^30 (since it takes 2 days to double hence will take 30 days of 60) on first day  2^0 =1 lilly on day 2  2^1 = 2 on day 3  2^2 = 4 so on ... now since the there are two lillies already it will take 2^30/ 2^1 = 2^29 ...this will take complete 2* 29 days i.e 58 days
I hope it is clear .....



Intern
Joined: 23 Apr 2014
Posts: 9

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
16 Sep 2014, 03:08
I am going by this formula : y(t) = y(0) x K^t where y(t) = desired value after t period y(0) = initial value k = multiplier (or the factor by which the value increases every t period) t = time period
Given  # of lilies doubles every two days ==> t= 2 days k^t = k^2 = 2 ==> k = sqrt(2) Now, it takes 60 days for a lake to be fully covered with water lilies starting from 1 lily so, y(0) = 1 t = 60 days y(t) i.e no. of lilies after 60 days y(t) = 1 x sqrt(2)^60
now, we have the final count of lilies after 60 days if we start from 1 lily. we can calculate the time period if we start from 2 lilies ( the # of lilies after 60 days will not change as the multiplier is constant)
1 x sqrt(2)^60 = 2 x sqrt(2)^t
Solving this will give t= 58 days.
I hope it helps.



Intern
Joined: 15 Jul 2012
Posts: 32

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
05 Oct 2014, 01:34
Bunuel wrote:
Notice that the total number of lilies is not 1+2+2^2+2^3..2^30, it's 2^30.
Initially = 1; After 2 days = 2, not 1+2; After 4 days = 2^2 = 4, not 1+2+4. ... After 60 days = 2^30, not 1+2+2^2+2^3+...+2^30.
Similarly, if initially there are 2 lilies, then the total number would be 2*2^x.
So, we'd have that 2^30 = 2*2^x > x = 29.
Hope it helps.
The number of water lilies on a certain lake doubles every two days. If there is exactly one water lily on the lake, it takes 60 days for the lake to be fully covered with water lilies. In how many days will the lake be fully covered with lilies, if initially there were two water lilies on it? (A) 15 (B) 28 (C) 30 (D) 58 (E) 59 hey Bunuel, i have a doubt in the first part of the problem it is given that if there is one lily it will take 60 days and number of water lillies double every 2 days. so, it is in GP and the terms will be a, ar, ar^2, ar^3 etc. here it is 1,2,4,8.... we need to find the 30th term which will be ar^n1 gives us ar^29 that leads to 1(2^29) but you got it as 2^30 what is wrong with what i did?



Math Expert
Joined: 02 Sep 2009
Posts: 61189

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
05 Oct 2014, 01:47
saggii27 wrote: Bunuel wrote:
Notice that the total number of lilies is not 1+2+2^2+2^3..2^30, it's 2^30.
Initially = 1; After 2 days = 2, not 1+2; After 4 days = 2^2 = 4, not 1+2+4. ... After 60 days = 2^30, not 1+2+2^2+2^3+...+2^30.
Similarly, if initially there are 2 lilies, then the total number would be 2*2^x.
So, we'd have that 2^30 = 2*2^x > x = 29.
Hope it helps.
The number of water lilies on a certain lake doubles every two days. If there is exactly one water lily on the lake, it takes 60 days for the lake to be fully covered with water lilies. In how many days will the lake be fully covered with lilies, if initially there were two water lilies on it? (A) 15 (B) 28 (C) 30 (D) 58 (E) 59 hey Bunuel, i have a doubt in the first part of the problem it is given that if there is one lily it will take 60 days and number of water lillies double every 2 days. so, it is in GP and the terms will be a, ar, ar^2, ar^3 etc. here it is 1,2,4,8.... we need to find the 30th term which will be ar^n1 gives us ar^29 that leads to 1(2^29) but you got it as 2^30 what is wrong with what i did? If you take first term as 1, then you'd have 31 terms: 1st day plus 30 divisions.
_________________



Board of Directors
Joined: 17 Jul 2014
Posts: 2471
Location: United States (IL)
Concentration: Finance, Economics
GMAT 1: 650 Q49 V30
GPA: 3.92
WE: General Management (Transportation)

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
24 Feb 2016, 17:48
since it doubles every 2 days.. on day 2  we have 2 on day 4  we have 4 or 2^2 on day 6  we have 8, or 2^3 as we see, the power is nr of days/2 so in 60 days, we'll have 2^30 lilies.
now, we start with 2... so on day2  we have 4 on day 4  we have 8... day 6 > 2^4 day 8 > 2^5 day 10 > 2^6 day 12 > 2^7
we can notice a pattern, that when # of days is divisible by 2, the power is +3 than for the last nr of days divisible by 6. so: day 54 > 4+3+3+3+3+3+3+3 > so 28th power. on day 56  we'll have 2^29 on day 58  we'll have 2^30  the number we need. so 58 days.



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 10097
Location: Pune, India

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
24 Feb 2016, 22:03
mvictor wrote: since it doubles every 2 days.. on day 2  we have 2 on day 4  we have 4 or 2^2 on day 6  we have 8, or 2^3 as we see, the power is nr of days/2 so in 60 days, we'll have 2^30 lilies.
now, we start with 2... so on day2  we have 4 on day 4  we have 8... day 6 > 2^4 day 8 > 2^5 day 10 > 2^6 day 12 > 2^7
we can notice a pattern, that when # of days is divisible by 2, the power is +3 than for the last nr of days divisible by 6. so: day 54 > 4+3+3+3+3+3+3+3 > so 28th power. on day 56  we'll have 2^29 on day 58  we'll have 2^30  the number we need. so 58 days. Or just think about it logically  you start with 1 lily on Day 1 beginning, get 2 by Day 2 end (or Day 3 beginning ), get 4 by Day 4 end get 8 by Day 6 end and so on till you get pond full of lilies by Day 60 end. If there are already 2 water lilies, you are just starting with Day 3 beginning and skipping the first 2 days. So to cover the pond you will need 2 days less i.e. 60  2 = 58 days.
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



Manager
Joined: 08 Sep 2015
Posts: 62

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
15 Oct 2016, 12:17
I found this formula to be easy to apply and it consistently gives me the right answer on questions like this.
Final population = S * P ^ (t/l) S = starting population P = progression (doubles = 2, triples = 3 etc.) t/l = total amount of iterations t = time I = intervals
Let X be final number of lilies that covered the lake after 60 days, which means that x = 1 lily * 2 ^ ( 60 days /2 days) From here => x = 2 ^30 = that is the final number of lilies needed to cover the lake now if we start with 2 lilies => 2 ^ 30( which is the total number of lilies needed to cover the lake ) = 2 * 2 ^ t/ 2
=> 30 = t/2 +1 => 29 = t/2 => t = 58  is the time needed to cover the lake when starting with 2 lilies



Manager
Joined: 07 Jun 2017
Posts: 159
Location: India
Concentration: Technology, General Management
GPA: 3.6
WE: Information Technology (Computer Software)

Re: The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
17 Oct 2017, 20:57
Every 2 days it doubles start with 1 means full in 60 days so start with 2 lilies means 602 days answer should be 58. D



Senior Manager
Status: Whatever it takes!
Joined: 10 Oct 2018
Posts: 381
GPA: 4

The number of water lilies on a certain lake doubles every
[#permalink]
Show Tags
22 Jul 2019, 22:39
rainbooow wrote: The number of water lilies on a certain lake doubles every two days. If there is exactly one water lily on the lake, it takes 60 days for the lake to be fully covered with water lilies. In how many days will the lake be fully covered with lilies, if initially there were two water lilies on it?
(A) 15 (B) 28 (C) 30 (D) 58 (E) 59 Could someone evaluate whether I did it right? 2^60 =\(\frac{2^n}{2}\) 60=n2 n=58 option D




The number of water lilies on a certain lake doubles every
[#permalink]
22 Jul 2019, 22:39






