Apr 20 10:00 PM PDT  11:00 PM PDT The Easter Bunny brings … the first day of school?? Yes! Now is the time to start studying for the GMAT if you’re planning to apply to Round 1 of fall MBA programs. Get a special discount with the Easter sale! Apr 21 07:00 AM PDT  09:00 AM PDT Get personalized insights on how to achieve your Target Quant Score. Apr 20 07:00 AM PDT  09:00 AM PDT Christina scored 760 by having clear (ability) milestones and a trackable plan to achieve the same. Attend this webinar to learn how to build trackable milestones that leverage your strengths to help you get to your target GMAT score. Apr 21 10:00 PM PDT  11:00 PM PDT $84 + an extra $10 off for the first month of EMPOWERgmat access. Train to be ready for Round 3 Deadlines with EMPOWERgmat's Score Booster. Ends April 21st Code: GCENHANCED Apr 22 08:00 AM PDT  09:00 AM PDT What people who reach the high 700's do differently? We're going to share insights, tips, and strategies from data we collected on over 50,000 students who used examPAL. Save your spot today! Apr 23 08:00 PM EDT  09:00 PM EDT Strategies and techniques for approaching featured GMAT topics. Tuesday, April 23rd at 8 pm ET Apr 24 08:00 PM EDT  09:00 PM EDT Maximize Your Potential: 5 Steps to Getting Your Dream MBA Part 3 of 5: Key TestTaking Strategies for GMAT. Wednesday, April 24th at 8 pm ET Apr 27 07:00 AM PDT  09:00 AM PDT Attend this webinar and master GMAT SC in 10 days by learning how meaning and logic can help you tackle 700+ level SC questions with ease. Apr 28 07:00 AM PDT  09:00 AM PDT Attend this webinar to learn a structured approach to solve 700+ Number Properties question in less than 2 minutes.
Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 54376

The side of an equilateral triangle has the same length as the diagona
[#permalink]
Show Tags
23 Jun 2015, 23:11
Question Stats:
83% (01:14) correct 17% (01:27) wrong based on 168 sessions
HideShow timer Statistics
The side of an equilateral triangle has the same length as the diagonal of a square. What is the area of the square? (1) The height of the equilateral triangle is equal to \(6\sqrt{3}\). (2) The area of the equilateral triangle is equal to \(36\sqrt{3}\). Kudos for a correct solution.
Official Answer and Stats are available only to registered users. Register/ Login.
_________________



Manager
Joined: 13 May 2011
Posts: 177
Concentration: Strategy, Technology
GPA: 3.2
WE: Accounting (Consulting)

Re: The side of an equilateral triangle has the same length as the diagona
[#permalink]
Show Tags
24 Jun 2015, 04:02
Quote: The side of an equilateral triangle has the same length as the diagonal of a square. What is the area of the square? Properties to remember: [a] Diagonal divides the square to 2 equal 45 45 90 triangles with sides ratios 1:1:\(\sqrt{2}\) [b] Area of square = \(s^2\), where s is the side of the square. [c] Height divides the triangle into 2 equal 30 60 90 triangles with side ratios 1:\(\sqrt{3}\):2 [d] Area of equilateral triangle = \(\frac{1}{2}t*h\), where t is the side of the triangle and h is the height. and using [c] that simplifies to \(\sqrt{3}t^2/4\) The properties for this question are important, because you don't need to make any calculations to solve it! This question is to test your knowledge of properties! (1) The height of the equilateral triangle is equal to 63‾√.If we know the height we can find: sides [c] and the area [d]! And if we know the side, we know the diagonal of the square (given in question stem), and knowing that we can find sides [a] and the area [b]. Sufficient.(2) The area of the equilateral triangle is equal to 363‾√. If we know the area, we can find the sides [d], from there read (1). Sufficient.Answer
_________________
Stay positive! ^.^ My blog  http://www.mbafortech.com



Retired Moderator
Joined: 06 Jul 2014
Posts: 1228
Location: Ukraine
Concentration: Entrepreneurship, Technology
GMAT 1: 660 Q48 V33 GMAT 2: 740 Q50 V40

The side of an equilateral triangle has the same length as the diagona
[#permalink]
Show Tags
24 Jun 2015, 04:28
Bunuel wrote: The side of an equilateral triangle has the same length as the diagonal of a square. What is the area of the square?
(1) The height of the equilateral triangle is equal to \(6\sqrt{3}\). (2) The area of the equilateral triangle is equal to \(36\sqrt{3}\).
Kudos for a correct solution. 1) equilateral traingle divided by height equal to two right triangles with angles 30, 60, 90 and ratios of sides \(1, \sqrt{3}, 2\) So if height = \(6\sqrt{3}\) then hypotenuse = 6*2 = 12. This hypotenuse is side of equilateral triangle and diagonal of square. Area of square from diagonal equal to \(\frac{d^2}{2}\) > \(\frac{12^2}{2} = 72\) Sufficient 2) area of equilateral triangle equal to \(\frac{s^2*sqrt(3)}{4}\) where s is side of the triangle As we know area \(36\sqrt{3}\) we can transform it to formula by multipling on 4 > \(\frac{4* 36*sqrt(3)}{4}\) So \(s^2 = 144\) > \(s = 12\) and this is diagonal of square Area of square from diagonal equal to \(\frac{d^2}{2}\) > \(\frac{12^2}{2} = 72\) Sufficient Answer is D
_________________



CEO
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2906
Location: India
GMAT: INSIGHT
WE: Education (Education)

The side of an equilateral triangle has the same length as the diagona
[#permalink]
Show Tags
24 Jun 2015, 06:14
Bunuel wrote: The side of an equilateral triangle has the same length as the diagonal of a square. What is the area of the square?
(1) The height of the equilateral triangle is equal to \(6\sqrt{3}\). (2) The area of the equilateral triangle is equal to \(36\sqrt{3}\).
Kudos for a correct solution. The basic methods and Properties have already been mentioned so let me use more of DS technique to answer this questionQuestion : What is the area of the square?To answer the question we only need to know the Dimension of side or Diagonal of Square as the two, in Square, can be related by \(Diagonal = Side*\sqrt{2}\) Question : What is the Diagonal or Side of Square?Given: The side of an equilateral triangle has the same length as the diagonal of a squareSince the diagonal of Square is related with the the Side of Equilateral triangle so now any information about any dimension (Side of Height or Area or Perimeter) of equilateral triangle will get us the answer. Area of Equilateral Triangle = \([\sqrt{3}/4]*Side^2\) Perimeter of Equilateral Triangle = \(3*Side\) Height of Equilateral Triangle = \([\sqrt{3}/2]*Side\)Question : What is Side of Height or Area or Perimeter of Equilateral Triangle?Statement 1:The height of the equilateral triangle is equal to \(6\sqrt{3}\)SUFFICIENTStatement 2:The area of the equilateral triangle is equal to \(36\sqrt{3}\).SUFFICIENTAnswer: Option
_________________
Prosper!!!GMATinsightBhoopendra Singh and Dr.Sushma Jha email: info@GMATinsight.com I Call us : +919999687183 / 9891333772 Online OneonOne Skype based classes and Classroom Coaching in South and West Delhihttp://www.GMATinsight.com/testimonials.htmlACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION



Manager
Joined: 26 Dec 2012
Posts: 146
Location: United States
Concentration: Technology, Social Entrepreneurship
WE: Information Technology (Computer Software)

The side of an equilateral triangle has the same length as the diagona
[#permalink]
Show Tags
24 Jun 2015, 10:39
Area of square= side square. Side of square can be found out if we know height of the triangle (by applying Pythagorean theorem, and then putting the same value as diagonal of square ) A) height of triangle =6roo3 , so area can be found out so sufficient B) area of triangle is 36root 3, so area of square can be found out, sufficient
Both answers are individually sufficient.
Hence answer is D Thanks,



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9125
Location: Pune, India

Re: The side of an equilateral triangle has the same length as the diagona
[#permalink]
Show Tags
24 Jun 2015, 22:27
Bunuel wrote: The side of an equilateral triangle has the same length as the diagonal of a square. What is the area of the square?
(1) The height of the equilateral triangle is equal to \(6\sqrt{3}\). (2) The area of the equilateral triangle is equal to \(36\sqrt{3}\).
Kudos for a correct solution. Note that squares and equilateral triangles are perfectly symmetrical figures. If you have any one dimension for them (side/altitude/diagonal/area), you can get everything else. You are given the relation between the side of the triangle and the diagonal of the square. This means that if you get any one dimension for any one figure, you will be able to calculate everything else for both the figures. Each statement gives you one dimension and hence each statement alone will be sufficient to get the area of the square. Answer (D)
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



Math Expert
Joined: 02 Aug 2009
Posts: 7570

Re: The side of an equilateral triangle has the same length as the diagona
[#permalink]
Show Tags
24 Jun 2015, 22:50
Bunuel wrote: The side of an equilateral triangle has the same length as the diagonal of a square. What is the area of the square?
(1) The height of the equilateral triangle is equal to \(6\sqrt{3}\). (2) The area of the equilateral triangle is equal to \(36\sqrt{3}\).
Kudos for a correct solution. All sides,area and other line segments such as median,altitude,diaginal median etc are interrelated in both square and equilateral triangle.. So knowing any one of these can help us in finding area,circumferece etc of each... In this question one of the side is related to another line segment of square .. therefore , by just knowing even one measurement of square or triangle is enough.. 1) height given.... suff 2) area given... suff ans D
_________________



Math Expert
Joined: 02 Sep 2009
Posts: 54376

Re: The side of an equilateral triangle has the same length as the diagona
[#permalink]
Show Tags
29 Jun 2015, 07:13
Bunuel wrote: The side of an equilateral triangle has the same length as the diagonal of a square. What is the area of the square?
(1) The height of the equilateral triangle is equal to \(6\sqrt{3}\). (2) The area of the equilateral triangle is equal to \(36\sqrt{3}\).
Kudos for a correct solution. MANHATTAN GMAT OFFICIAL SOLUTION:No calculation is needed to solve this problem. Both equilateral triangles and squares are regular figures— those that can change size, but never shape. Regular figures (squares, equilaterals, circles, spheres, cubes, 454590 triangles, 306090 triangles, and others) are those for which you only need one measurement to know every measurement. For instance, if you have the radius of a circle, you can get the diameter, circumference, and area. If you have a 454590 or 306090 triangle, you only need one side to get all three. In this problem, if you have the side of an equilateral, you could get the height, area, and perimeter. If you have the side of a square, you could get the diagonal, area, and perimeter. If you have two regular figures, as you do in this problem, and you know how they are related numerically (“the side of an equilateral triangle has the same length as the diagonal of a square”), then you can safely conclude that any measurement for either figure will give you any measurement for either figure. The question can be rephrased as, “What is the length of any part of either figure?” 1) This gives you the height of the triangle. SUFFICIENT. 2) This gives you the area of the triangle. SUFFICIENT. Answer: D.
_________________



Senior Manager
Joined: 24 Nov 2015
Posts: 499
Location: United States (LA)

Re: The side of an equilateral triangle has the same length as the diagona
[#permalink]
Show Tags
12 Apr 2016, 14:33
from statement 1 we get height of equilateral triangle Height of triangle > Side of triangle > Diagonal of square > Side of square > Area of square statement 1 sufficient From statement 2 we get Area of equilateral triangle Area of triangle > Side of triangle > Diagonal of square > Side of square > Area of square statement 2 also sufficient correct answer option D



Director
Joined: 12 Nov 2016
Posts: 725
Location: United States
GPA: 2.66

Re: The side of an equilateral triangle has the same length as the diagona
[#permalink]
Show Tags
05 Sep 2017, 16:46
Bunuel wrote: The side of an equilateral triangle has the same length as the diagonal of a square. What is the area of the square?
(1) The height of the equilateral triangle is equal to \(6\sqrt{3}\). (2) The area of the equilateral triangle is equal to \(36\sqrt{3}\).
Kudos for a correct solution. Statement 1 If we know the height of the equilateral triangle then we can just work back words to find the side lengths of the triangle Suff Statement 2 If we know the area of the equilateral triangle then we just could apply the alternative formula for the area of an equilateral triangle \sqrt{3}/4 = area of equilateral S^2 \sqrt{3}/4 = \(6\sqrt{3}\) S^2 \sqrt{3} =144 \sqrt{3} Suff D




Re: The side of an equilateral triangle has the same length as the diagona
[#permalink]
05 Sep 2017, 16:46






