GMATPrepNow wrote:
blog wrote:
A certain junior class has 1,000 students and a certain senior class has 800 students. Among these students, there are 60 siblings pairs, each consisting of 1 junior and 1 senior. If 1 student is to be selected at random from each class, what is the probability that the 2 students selected at will be a sibling pair?
A. 3/40,000
B. 1/3,600
C. 9/2,000
D. 1/60
E. 1/15
\(\left( J \right)\,\,{\text{Junior}}\,\,:\,\,\,1000\,\,{\text{students}}\,\,,\,\,\,{J_1}\,,\,{J_2},\,\, \ldots \,\,,\,\,{J_{60}}\,\,{\text{among}}\,\,{\text{them}}\,\,\,\left( {{\text{the}}\,\,{\text{ones}}\,\,{\text{with}}\,\,{\text{senior}}\,\,{\text{siblings}}} \right)\)
\(\left( S \right)\,\,{\text{Senior}}\,\,:\,\,\,800\,\,{\text{students}}\,\,,\,\,\,{S_1}\,,\,{S_2},\,\, \ldots \,\,,\,\,{S_{60}}\,\,{\text{among}}\,\,{\text{them}}\,\,\,\left( {{\text{the}}\,\,{\text{ones}}\,\,{\text{with}}\,\,{\text{junior}}\,\,{\text{siblings}}} \right)\)
\(\left( {{J_1}\,,\,{S_1}} \right)\,\,;\,\,\left( {{J_2}\,,\,{S_2}} \right)\,\,;\,\, \ldots \,\,;\,\,\left( {{J_{60}}\,,\,{S_{60}}} \right)\,\,\,:\,\,\,{\text{pairs}}\,\,{\text{of}}\,\,{\text{siblings}}\,\)
\(? = P\left( {{\text{pair}}\,{\text{of}}\,{\text{siblings}}\,,\,\,{\text{in}}\,{\text{one}}\,J\,{\text{and}}\,{\text{one}}\,S\,{\text{extraction}}} \right)\)
\({\text{Total}}\,\,:\,\,\,1000 \cdot 800\,\,\,{\text{equiprobables}}\,\,\,\left[ {\left( {{J_m},{S_n}} \right)\,\,,\,\,\,{\text{where}}\,\,1 \leqslant m \leqslant 1000\,\,{\text{and}}\,\,\,1 \leqslant n \leqslant 800} \right]\)
\({\text{Favorable}}\,\,:\,\,60\,\,\,\,\,\left[ {\left( {{J_k},{S_k}} \right)\,\,,\,\,\,{\text{where}}\,\,1 \leqslant k \leqslant 60} \right]\,\,\,\,\)
\(? = \frac{{60}}{{1000 \cdot 800}} = \underleftrightarrow {\frac{{4 \cdot 15}}{{1000 \cdot 4 \cdot 200}}} = \frac{{4 \cdot 3 \cdot 5}}{{1000 \cdot 4 \cdot 5 \cdot 40}} = \frac{3}{{40 \cdot 1000}}\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net