GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 23 Jan 2019, 16:56

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in January
PrevNext
SuMoTuWeThFrSa
303112345
6789101112
13141516171819
20212223242526
272829303112
Open Detailed Calendar
• ### Key Strategies to Master GMAT SC

January 26, 2019

January 26, 2019

07:00 AM PST

09:00 AM PST

Attend this webinar to learn how to leverage Meaning and Logic to solve the most challenging Sentence Correction Questions.
• ### Free GMAT Number Properties Webinar

January 27, 2019

January 27, 2019

07:00 AM PST

09:00 AM PST

Attend this webinar to learn a structured approach to solve 700+ Number Properties question in less than 2 minutes.

# A researcher plans to identify each participant in a certain

Author Message
TAGS:

### Hide Tags

Intern
Joined: 12 May 2012
Posts: 19
Location: United States
Concentration: Technology, Human Resources
A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

Updated on: 17 Jun 2012, 03:20
16
172
00:00

Difficulty:

65% (hard)

Question Stats:

58% (01:17) correct 42% (01:31) wrong based on 3351 sessions

### HideShow timer Statistics

A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Originally posted by sarb on 17 Jun 2012, 03:13.
Last edited by Bunuel on 17 Jun 2012, 03:20, edited 1 time in total.
Edited the question.
Math Expert
Joined: 02 Sep 2009
Posts: 52431
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

17 Jun 2012, 03:24
30
46
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Say there are minimum of $$n$$ letters needed, then;

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be $$C^2_n$$ (in alphabetical order);

We want $$C^2_n+n\geq{12}$$ --> $$\frac{n(n-1)}{2}+n\geq{12}$$ --> $$n(n-1)+2n\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> $$n_{min}=5$$.

Hope it's clear.
_________________
##### General Discussion
Math Expert
Joined: 02 Sep 2009
Posts: 52431
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

17 Jun 2012, 03:34
4
42
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Similar questions to practice:
if-a-code-word-is-defined-to-be-a-sequence-of-different-126652.html
all-of-the-stocks-on-the-over-the-counter-market-are-126630.html
the-simplastic-language-has-only-2-unique-values-and-105845.html
a-4-letter-code-word-consists-of-letters-a-b-and-c-if-the-59065.html
a-certain-stock-exchange-designates-each-stock-with-a-86656.html
a-5-digit-code-consists-of-one-number-digit-chosen-from-132263.html

Hope it helps.
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 52431
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

17 Jun 2012, 03:49
10
18
Almost identical question:

John has 12 clients and he wants to use color coding to identify each client. If either a single color or a pair of two different colors can represent a client code, what is the minimum number of colors needed for the coding? Assume that changing the color order within a pair does not produce different codes.
A. 24
B. 12
C. 7
D. 6
E. 5

The concept is not that hard. We can use combination or trial and error approach.

Combination approach:
Let # of colors needed be $$n$$, then it must be true that $$n+C^2_n\geq{12}$$ ($$C^2_n$$ - # of ways to choose the pair of different colors from $$n$$ colors when order doesn't matter) --> $$n+\frac{n(n-1)}{2}\geq{12}$$ --> $$2n+n(n-1)\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> as $$n$$ is an integer (it represents # of colors) $$n\geq{5}$$ --> $$n_{min}=5$$.

Trial and error approach:
If the minimum number of colors needed is 4 then there are 4 single color codes possible PLUS $$C^2_4=6$$ two-color codes --> 4+6=10<12 --> not enough for 12 codes;

If the minimum number of colors needed is 5 then there are 5 single color codes possible PLUS $$C^2_5=10$$ two-color codes --> 5+10=15>12 --> more than enough for 12 codes.

Actually as the least answer choice is 5 then if you tried it first you'd get the correct answer right away.

Hope it helps.
_________________
Intern
Joined: 27 Aug 2012
Posts: 14
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

01 Dec 2012, 19:10
Bunnel. Thaks for the reply and merging similar topics. Can u please explain how >= 12 ?
Math Expert
Joined: 02 Sep 2009
Posts: 52431
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

02 Dec 2012, 03:51
2
SreeViji wrote:
Bunnel. Thaks for the reply and merging similar topics. Can u please explain how >= 12 ?

The number of letters should be enough to make at least 12 codes, thus the number of codes must be more than or equal to 12.
_________________
Senior Manager
Joined: 07 Apr 2012
Posts: 359
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

02 Dec 2012, 13:48
3
Hi Bunnel

won't this $$C^2_n$$
just give you all the pairs available?
we need them also ordered....
Math Expert
Joined: 02 Sep 2009
Posts: 52431
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

03 Dec 2012, 01:30
4
4
ronr34 wrote:
Hi Bunnel

won't this $$C^2_n$$
just give you all the pairs available?
we need them also ordered....

Notice that we are told that letters in the code should be written in alphabetical order. Now, 2Cn gives different pairs of 2 letters possible out of n letters, but since codes should be written in one particular order (alphabetical), then for each pair there will be only one ordering possible, thus the number of codes out of n letters equals to number of pairs out of n letters.

Hope it's clear.
_________________
Manager
Joined: 24 Mar 2010
Posts: 64
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

23 Dec 2012, 12:22
Bunuel wrote:
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Say there are minimum of $$n$$ letters needed, then;

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be $$C^2_n$$ (in alphabetical order);

We want $$C^2_n+n\geq{12}$$ --> $$\frac{n(n-1)}{2}+n\geq{12}$$ --> $$n(n-1)+2n\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> $$n_{min}=5$$.

Hope it's clear.

Bunuel,

What if the question didn't say 'pair'.

If 3 letter combinations were also permitted. How would you express it in Combination formula?
_________________

- Stay Hungry, stay Foolish -

Math Expert
Joined: 02 Sep 2009
Posts: 52431
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

23 Dec 2012, 23:41
3
eaakbari wrote:
Bunuel wrote:
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Say there are minimum of $$n$$ letters needed, then;

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be $$C^2_n$$ (in alphabetical order);

We want $$C^2_n+n\geq{12}$$ --> $$\frac{n(n-1)}{2}+n\geq{12}$$ --> $$n(n-1)+2n\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> $$n_{min}=5$$.

Hope it's clear.

Bunuel,

What if the question didn't say 'pair'.

If 3 letter combinations were also permitted. How would you express it in Combination formula?

Practice: try to use the same concept.
_________________
Manager
Joined: 24 Mar 2010
Posts: 64
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

24 Dec 2012, 00:28
2
Bunuel wrote:

Practice: try to use the same concept.

Okay here goes,

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be (in alphabetical order); $$nC2$$
The # of Triples of distinct letters codes possible would be (in alphabetical order); $$nC3$$

Thus

$$nC3 + nC2 + n$$> $$12$$

$$n*(n-1)/2 + n*(n-1)*(n-2)/3*2 + n$$> $$12$$

Simplifying

$$n*(n^2 +5)$$> $$72$$

Only sufficient value of $$n = 4$$

Is it correct?
_________________

- Stay Hungry, stay Foolish -

Math Expert
Joined: 02 Sep 2009
Posts: 52431
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

24 Dec 2012, 00:49
2
1
eaakbari wrote:
Bunuel wrote:

Practice: try to use the same concept.

Okay here goes,

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be (in alphabetical order); $$nC2$$
The # of Triples of distinct letters codes possible would be (in alphabetical order); $$nC3$$

Thus

$$nC3 + nC2 + n$$> $$12$$

$$n*(n-1)/2 + n*(n-1)*(n-2)/3*2 + n$$> $$12$$

Simplifying

$$n*(n^2 +5)$$> $$72$$

Only sufficient value of $$n = 4$$

Is it correct?

Correct.

Three letters A, B, and C, are enough for 7<12 codes:
A;
B;
C;
AB;
AC;
BC;
ABC.

Four letters A, B, C, and D are enough for 15>12 codes:
A;
B;
C;
D;
AB;
AC;
BC;
BD;
CD;
ABC;
ABD;
ACD;
BCD;
ABCD.
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 52431
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

22 Nov 2013, 14:21
1
12
Bunuel wrote:
yenpham9 wrote:
Bunuel wrote:
Say there are minimum of $$n$$ letters needed, then;

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be $$C^2_n$$ (in alphabetical order);

We want $$C^2_n+n\geq{12}$$ --> $$\frac{n(n-1)}{2}+n\geq{12}$$ --> $$n(n-1)+2n\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> $$n_{min}=5$$.

Hope it's clear.

Hi Bunnel,

I still have a little confuse in your formula $$C^2_n$$. I am thinking this should be $$A^2_n$$ because the 2-letter code must be in alphabetical order.

Hope to hear from you soon.

Thanks

Similar questions to practice:
each-student-at-a-certain-university-is-given-a-four-charact-151945.html
all-of-the-stocks-on-the-over-the-counter-market-are-126630.html
if-a-code-word-is-defined-to-be-a-sequence-of-different-126652.html
a-4-letter-code-word-consists-of-letters-a-b-and-c-if-the-59065.html
a-5-digit-code-consists-of-one-number-digit-chosen-from-132263.html
a-company-that-ships-boxes-to-a-total-of-12-distribution-95946.html
a-company-plans-to-assign-identification-numbers-to-its-empl-69248.html
the-security-gate-at-a-storage-facility-requires-a-five-109932.html
all-of-the-bonds-on-a-certain-exchange-are-designated-by-a-150820.html
a-local-bank-that-has-15-branches-uses-a-two-digit-code-to-98109.html
a-researcher-plans-to-identify-each-participant-in-a-certain-134584.html
baker-s-dozen-128782-20.html#p1057502
in-a-certain-appliance-store-each-model-of-television-is-136646.html
m04q29-color-coding-70074.html
john-has-12-clients-and-he-wants-to-use-color-coding-to-iden-107307.html
how-many-4-digit-even-numbers-do-not-use-any-digit-more-than-101874.html
a-certain-stock-exchange-designates-each-stock-with-a-85831.html
the-simplastic-language-has-only-2-unique-values-and-105845.html
m04q29-color-coding-70074.html

Hope this helps.
_________________
Intern
Joined: 12 Mar 2011
Posts: 15
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

22 Nov 2013, 14:37
Bunuel wrote:
ronr34 wrote:
Hi Bunnel

won't this $$C^2_n$$
just give you all the pairs available?
we need them also ordered....

Notice that we are told that letters in the code should be written in alphabetical order. Now, 2Cn gives different pairs of 2 letters possible out of n letters, but since codes should be written in one particular order (alphabetical), then for each pair there will be only one ordering possible, thus the number of codes out of n letters equals to number of pairs out of n letters.

Hope it's clear.

Hi Bunuel,

From n letters we choose the number of pairs, the result will be $$C^2_n$$ which may include 2 kinds of pairs (AB) and (BA). Still confused .
Math Expert
Joined: 02 Sep 2009
Posts: 52431
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

22 Nov 2013, 14:43
yenpham9 wrote:
Bunuel wrote:
ronr34 wrote:
Hi Bunnel

won't this $$C^2_n$$
just give you all the pairs available?
we need them also ordered....

Notice that we are told that letters in the code should be written in alphabetical order. Now, 2Cn gives different pairs of 2 letters possible out of n letters, but since codes should be written in one particular order (alphabetical), then for each pair there will be only one ordering possible, thus the number of codes out of n letters equals to number of pairs out of n letters.

Hope it's clear.

Hi Bunuel,

From n letters we choose the number of pairs, the result will be $$C^2_n$$ which may include 2 kinds of pairs (AB) and (BA). Still confused .

Maybe the following example would help. Consider 4 letters {a, b, c, d}. How many 2-letter words in alphabetical order are possible? The answer is $$C^2_4=6$$:
ab;
ac;
bc;
bd;
cd.
_________________
Senior Manager
Status: Verbal Forum Moderator
Joined: 17 Apr 2013
Posts: 480
Location: India
GMAT 1: 710 Q50 V36
GMAT 2: 750 Q51 V41
GMAT 3: 790 Q51 V49
GPA: 3.3
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

25 Nov 2013, 03:38
Bunuel wrote:
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Say there are minimum of $$n$$ letters needed, then;

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be $$C^2_n$$ (in alphabetical order);

We want $$C^2_n+n\geq{12}$$ --> $$\frac{n(n-1)}{2}+n\geq{12}$$ --> $$n(n-1)+2n\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> $$n_{min}=5$$.

Hope it's clear.

we can take 1,2 and 3
like
A, B, C
AB, BC
ABC

Why did you ignored possibility of 3 or 4 alphabets taken together, this will give us 4 letters?
_________________

Like my post Send me a Kudos It is a Good manner.
My Debrief: http://gmatclub.com/forum/how-to-score-750-and-750-i-moved-from-710-to-189016.html

Math Expert
Joined: 02 Sep 2009
Posts: 52431
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

25 Nov 2013, 03:41
1
honchos wrote:
Bunuel wrote:
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Say there are minimum of $$n$$ letters needed, then;

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be $$C^2_n$$ (in alphabetical order);

We want $$C^2_n+n\geq{12}$$ --> $$\frac{n(n-1)}{2}+n\geq{12}$$ --> $$n(n-1)+2n\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> $$n_{min}=5$$.

Hope it's clear.

we can take 1,2 and 3
like
A, B, C
AB, BC
ABC

Why did you ignored possibility of 3 or 4 alphabets taken together, this will give us 4 letters?

Please read the question carefully: a code consists of either a single letter or a pair of distinct letters written in alphabetical order.
_________________
Senior Manager
Status: Verbal Forum Moderator
Joined: 17 Apr 2013
Posts: 480
Location: India
GMAT 1: 710 Q50 V36
GMAT 2: 750 Q51 V41
GMAT 3: 790 Q51 V49
GPA: 3.3
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

25 Nov 2013, 03:47
Lets take A B C D
A
B
C
D
AB
AC
BC
BD
CD
ABC
BCA
CBA

It is alphabetical and all letter for a particular codes are different.
_________________

Like my post Send me a Kudos It is a Good manner.
My Debrief: http://gmatclub.com/forum/how-to-score-750-and-750-i-moved-from-710-to-189016.html

Math Expert
Joined: 02 Sep 2009
Posts: 52431
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

25 Nov 2013, 03:51
2
honchos wrote:
Lets take A B C D
A
B
C
D
AB
AC
BC
BD
CD
ABC
BCA
CBA

It is alphabetical and all letter for a particular codes are different.

Please read the question carefully. The stem says that a code can consists of 1 or 2 letters ONLY: a code consists of either a single letter or a pair of distinct letters written in alphabetical order.
_________________
Intern
Joined: 20 Nov 2013
Posts: 25
Schools: LBS '17
Re: A researcher plans to identify each participant in a certain  [#permalink]

### Show Tags

25 Feb 2014, 07:57
1
Bunuel wrote:
sarb wrote:
A researcher plans to identify each participant in a certain medical experiment with a code consisting of either a single letter or a pair of distinct letters written in alphabetical order. What is the least number of letters that can be used if there are 12 participants, and each participant is to receive a different code?

A. 4
B. 5
C. 6
D. 7
E. 8

Say there are minimum of $$n$$ letters needed, then;

The # of single letter codes possible would be $$n$$ itself;
The # of pair of distinct letters codes possible would be $$C^2_n$$ (in alphabetical order);

We want $$C^2_n+n\geq{12}$$ --> $$\frac{n(n-1)}{2}+n\geq{12}$$ --> $$n(n-1)+2n\geq{24}$$ --> $$n(n+1)\geq{24}$$ --> $$n_{min}=5$$.

Hope it's clear.

I have a questions here:
How did we get from $$n(n+1)\geq{24}$$ to $$n_{min}=5$$
Re: A researcher plans to identify each participant in a certain &nbs [#permalink] 25 Feb 2014, 07:57

Go to page    1   2   3   4    Next  [ 63 posts ]

Display posts from previous: Sort by