It is currently 17 Dec 2017, 19:37

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

A right triangle has sides of a, b, and 11, respectively,

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

3 KUDOS received
Manager
Manager
User avatar
Joined: 04 Aug 2013
Posts: 105

Kudos [?]: 247 [3], given: 56

Location: India
Schools: McCombs '17
GMAT 1: 670 Q47 V35
GPA: 3
WE: Manufacturing and Production (Pharmaceuticals and Biotech)
A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 12 Jul 2014, 22:18
3
This post received
KUDOS
16
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

54% (01:50) correct 46% (01:55) wrong based on 337 sessions

HideShow timer Statistics

A right triangle has sides of a, b, and 11, respectively, where a and b are both integers. What is the value of (a + b)?

A. 15
B. 57
C. 93
D. 109
E. 121
[Reveal] Spoiler: OA

Kudos [?]: 247 [3], given: 56

6 KUDOS received
Manager
Manager
avatar
Joined: 20 Dec 2013
Posts: 101

Kudos [?]: 73 [6], given: 46

Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 13 Jul 2014, 00:25
6
This post received
KUDOS
3
This post was
BOOKMARKED
Here is the explanation -

Having sides a, b, and 11 is a RIGHT angle triangle , Hence using Pythagoras theorem -
CASE 1 -> a*a + b*b = 11*11 (Assuming 11 is the longest side)
or CASE 2 -> 11*11 + b*b = a*a (Assuming a is the longest side)

Do not forget that we are also given all sides are integer.

Consider CASE 1 now - Can you think of any set of two integers (both lest than 11 ) such as
a*a + b*b = 11*11 = 121

we have perfect squares less than 121 as - 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
If you add any of the above two you will never get sum as 121 .
Hence CASE 1 is VOID


Consider CASE 2 now -

11*11 + b*b = a*a
then 11*11 = a*a + b*b => 121 = (a+b)(a-b) - Equation 1

As we are given All sides are integer -> a, b are integers -> 'a+b' and 'a-b' are also integers.
Equation 1 states that 121 is [color=#0072bc]product of two integers
and 121 is a very interesting number in the way that it has only two combination of
product of two integers
Combination 1 : a+b = 11 also a-b = 11 -> This case is invalid as it will result that one side of triangle b =0
Combination 2 : a+b = 121 and a-b=1 -> This case is Valid and gives us the answer that 'a+b' = 121
[/color]

Hence option E
Tricky question indeed ! 8-)
_________________

Best
MKS
Appreciate it with Kudos !! :)

Kudos [?]: 73 [6], given: 46

Intern
Intern
avatar
Joined: 13 Aug 2013
Posts: 23

Kudos [?]: 6 [0], given: 1

Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 13 Jul 2014, 00:43
A pythagorean triplet involving 11 is (11,60,61) . Since, the other two sides are integers, hence this satisfies. and we have 60+61=121 in the option (Although,I do not advocate the usage of this fundamental in solving the questions , but if one is through with basic pythagorean triplets then it would really help in saving some valuable time)

Kudos [?]: 6 [0], given: 1

Current Student
avatar
B
Joined: 15 Sep 2013
Posts: 7

Kudos [?]: [0], given: 5

Concentration: Finance, Entrepreneurship
GMAT 1: 710 Q49 V39
GMAT 2: 600 Q49 V23
GPA: 3.6
WE: Business Development (Manufacturing)
Reviews Badge
Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 13 Jul 2014, 03:37
It is debatable if a three sided figure with one zero length is a triangle. Is this question GMAT worthy?

Kudos [?]: [0], given: 5

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42653

Kudos [?]: 135991 [1], given: 12719

Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 13 Jul 2014, 03:45
1
This post received
KUDOS
Expert's post
Avais wrote:
It is debatable if a three sided figure with one zero length is a triangle. Is this question GMAT worthy?


The length must be greater than 0. The sides are {11, 60, 61}: each sides is greater than 0. Don't see any problem with this question.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135991 [1], given: 12719

Current Student
avatar
Status: Applied
Joined: 02 May 2014
Posts: 164

Kudos [?]: 36 [0], given: 46

Location: India
Concentration: Operations, General Management
GMAT 1: 690 Q47 V38
GPA: 3.35
WE: Information Technology (Computer Software)
Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 24 Dec 2014, 04:46
is there any shor trick to solve this type of question?

Kudos [?]: 36 [0], given: 46

3 KUDOS received
Manager
Manager
avatar
Joined: 07 Dec 2009
Posts: 107

Kudos [?]: 37 [3], given: 375

GMAT Date: 12-03-2014
GMAT ToolKit User Premium Member
A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 01 Mar 2015, 07:19
3
This post received
KUDOS
3
This post was
BOOKMARKED
Veritas Prep Official Solution:

Since the first two right triangles with integer sides are the 3-4-5, the 6-8-10, and the 5-12-13, 11 cannot be the hypotenuse. Hence 11 is one of the legs, and our equation is \(11^2 + a^2 = b^2.\) Subtracting a^2 from both sides gives us \(11^2 = b^2 - a^2\), or \(121 = (b + a)(b - a)\). Since b and a are both positive integers, (b + a) must = 121 and (b - a) must = 1. (The only other option, (b+a)=(b-a)=11 is impossible with positive a.) Hence \((b + a) = 121\).

Last edited by Bunuel on 07 Jul 2015, 11:39, edited 1 time in total.
Formatting.

Kudos [?]: 37 [3], given: 375

Intern
Intern
avatar
Joined: 16 Mar 2014
Posts: 4

Kudos [?]: [0], given: 0

Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 07 Jul 2015, 09:02
I did not understand the Veritas official explanation for this, they have taken the standard ratios - 3-4-5, 5-12-13 and determine on the basis of those, that the hyp cannot be 11, could someone explain this reasoning?

Kudos [?]: [0], given: 0

Expert Post
2 KUDOS received
SVP
SVP
User avatar
G
Joined: 08 Jul 2010
Posts: 1870

Kudos [?]: 2413 [2], given: 51

Location: India
GMAT: INSIGHT
WE: Education (Education)
Reviews Badge
A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 07 Jul 2015, 10:09
2
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
anceer wrote:
A right triangle has sides of a, b, and 11, respectively, where a and b are both integers. What is the value of (a + b)?

A. 15
B. 57
C. 93
D. 109
E. 121


The trick for this question is

If the side of a right angle triangle is a prime number then other two sides will be

Second Side = [(Prime)^2 + 1]/2

Third Side = [(Prime)^2 - 1]/2


i.e. for One side = 11

Second Side = (11^2 -1)/2 = (121-1)/2 = 60
Third Side = (11^2 +1)/2 = (121+1)/2 = 61

I hope this helps!

I personally find it an UNSUITABLE question for GMAT... GMAT Doesn't expect such tricks from students.
_________________

Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION

Kudos [?]: 2413 [2], given: 51

Expert Post
1 KUDOS received
GMAT Tutor
avatar
S
Joined: 24 Jun 2008
Posts: 1347

Kudos [?]: 2047 [1], given: 6

Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 07 Jul 2015, 11:02
1
This post received
KUDOS
Expert's post
GMATinsight wrote:

The trick for this question is

If the side of a right angle triangle is a prime number then other two sides will be

Second Side = [(Prime)^2 + 1]/2

Third Side = [(Prime)^2 - 1]/2



First, if all you know is that the length of one side is prime, there are infinitely many possible lengths for the other sides. It's only if you know the other sides are integers that there might be a formula.

But you also mean to say "if the shortest side of a right triangle is prime, and the other sides are of integer length, the other sides will be..." If all you know is that one side is of length 5, say, using your formulas you'd think the other sides need to be 12 and 13. They could also be 3 and 4.

GMATinsight wrote:

I personally find it an UNSUITABLE question for GMAT... GMAT Doesn't expect such tricks from students.


No one will ever need the formulas you posted in a GMAT question, and it would be pointless for a test taker to memorize them. But you certainly don't need those formulas here. You only need to know the difference of squares factorization, and that there is only one way to write 11^2 as a product of two distinct positive integers. The question is well within the scope of the GMAT.
_________________

GMAT Tutor in Toronto

If you are looking for online GMAT math tutoring, or if you are interested in buying my advanced Quant books and problem sets, please contact me at ianstewartgmat at gmail.com

Kudos [?]: 2047 [1], given: 6

Expert Post
SVP
SVP
User avatar
G
Joined: 08 Jul 2010
Posts: 1870

Kudos [?]: 2413 [0], given: 51

Location: India
GMAT: INSIGHT
WE: Education (Education)
Reviews Badge
Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 07 Jul 2015, 11:41
IanStewart wrote:
GMATinsight wrote:

The trick for this question is

If the side of a right angle triangle is a prime number then other two sides will be

Second Side = [(Prime)^2 + 1]/2

Third Side = [(Prime)^2 - 1]/2



First, if all you know is that the length of one side is prime, there are infinitely many possible lengths for the other sides. It's only if you know the other sides are integers that there might be a formula.

But you also mean to say "if the shortest side of a right triangle is prime, and the other sides are of integer length, the other sides will be..." If all you know is that one side is of length 5, say, using your formulas you'd think the other sides need to be 12 and 13. They could also be 3 and 4.

GMATinsight wrote:

I personally find it an UNSUITABLE question for GMAT... GMAT Doesn't expect such tricks from students.


No one will ever need the formulas you posted in a GMAT question, and it would be pointless for a test taker to memorize them. But you certainly don't need those formulas here. You only need to know the difference of squares factorization, and that there is only one way to write 11^2 as a product of two distinct positive integers. The question is well within the scope of the GMAT.


You seem of have less understanding of the word "OPINION"

I hope you prove me wrong by bringing ONE question from authentic source of GMAT questions if you have enough exposure of GMAT.(Refer OG, GMAT PREP etc.)

Another point, whether you take (3, 4, 5) or (5, 12, 13) it fit in both cases. and the forward application doesn't approve of backward application as well. (1 is a natural no. doesn't mean that a natural no. has to be 1)

And yes, It fit's to the cases when the smallest side is prime Number and the all Sides are of Integer length so I must admit you are good at finding faults and not as good in appreciating a new concept and an opinion.
_________________

Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION

Kudos [?]: 2413 [0], given: 51

Expert Post
1 KUDOS received
GMAT Tutor
avatar
S
Joined: 24 Jun 2008
Posts: 1347

Kudos [?]: 2047 [1], given: 6

Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 07 Jul 2015, 13:24
1
This post received
KUDOS
Expert's post
GMATinsight wrote:

Another point, whether you take (3, 4, 5) or (5, 12, 13) it fit in both cases. and the forward application doesn't approve of backward application as well. (1 is a natural no. doesn't mean that a natural no. has to be 1)


I'm afraid I don't understand your reply. In your first post, you said that when "the side of a right angle triangle is a prime number then other two sides will be" x and y. That is, you said we can determine the other two sides from one side, when the length of that one side is prime. That's not true, but if a test taker believed it was, he or she might answer questions incorrectly on the GMAT - for example, a DS question like the following:

If the lengths of the three sides of a right triangle are integers, what is the perimeter of the triangle?
1. The length of one side is 5
2. Two of the lengths are prime numbers


A test taker who thinks that a single prime length is sufficient to determine the other two will think Statement 1 is sufficient, and will pick A, which is not the right answer - the answer is E, since the triangle might be a 3-4-5 or 5-12-13 triangle. I will always post a clarification if an expert here posts something which might be misinterpreted, and which might lead a test taker to answer test questions incorrectly, and I'd always be grateful to anyone who posts a clarification of one of my posts if I were ever to make an error.

I also don't understand why you think I confused your statement with its converse (what you're suggesting in your comment about natural numbers). I did not. Nor do I understand why you consider it relevant that the 3-4-5 triangle fits your formula, since we don't find the lengths 3 and 4 by plugging in '5', but regardless there are other triangles with a prime length that do not satisfy those formulas - the 8-15-17 triangle, for example.

GMATinsight wrote:

You seem of have less understanding of the word "OPINION"

I hope you prove me wrong by bringing ONE question from authentic source of GMAT questions if you have enough exposure of GMAT.(Refer OG, GMAT PREP etc.)


I don't think it often is a matter of opinion whether a question falls within the scope of the GMAT. It's not clear to me precisely why you think this question is out of the scope of the test. I agree with you when you say, referring to your formulas, that "GMAT Doesn't expect such tricks from students." That seemed to me the only reason you described this question as "unsuitable" for the test. But those formulas aren't at all necessary here, so I disagreed with your initial premise. The main mathematical issue in this question, when solving it using the difference of squares factorization, is recognizing that when b > c > 0, and b and c are positive integers, the equation (b+c)(b-c) = 121 has only one possible solution. If you want to see an official question that relies on very similar logic, see this one from GMATFocus:

if-x-and-y-are-integers-such-that-x-y-0-what-is-x-156464.html
_________________

GMAT Tutor in Toronto

If you are looking for online GMAT math tutoring, or if you are interested in buying my advanced Quant books and problem sets, please contact me at ianstewartgmat at gmail.com

Kudos [?]: 2047 [1], given: 6

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 14796

Kudos [?]: 288 [0], given: 0

Premium Member
Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 29 Aug 2016, 02:36
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 288 [0], given: 0

Current Student
User avatar
S
Joined: 28 Nov 2014
Posts: 918

Kudos [?]: 220 [0], given: 79

Concentration: Strategy
Schools: Fisher '19 (M)
GPA: 3.71
Reviews Badge
Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 19 Sep 2016, 12:19
IanStewart: Thumbs up! I agree with your perspective too.

Kudos [?]: 220 [0], given: 79

Manager
Manager
avatar
Joined: 23 Sep 2016
Posts: 98

Kudos [?]: 31 [0], given: 8

A right triangle has sides of a, b, and 11, respectively, where a and [#permalink]

Show Tags

New post 01 Nov 2016, 08:47
A right triangle has sides of a, b, and 11, respectively, where a and b are both integers. What is the value of (a + b)?

A) 15
B) 57
C) 93
D) 109
E) 121

Kudos [?]: 31 [0], given: 8

Intern
Intern
avatar
B
Joined: 17 Aug 2016
Posts: 49

Kudos [?]: 3 [0], given: 82

Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 01 Nov 2016, 15:48
GMATinsight wrote:
IanStewart wrote:
GMATinsight wrote:

The trick for this question is

If the side of a right angle triangle is a prime number then other two sides will be

Second Side = [(Prime)^2 + 1]/2

Third Side = [(Prime)^2 - 1]/2



First, if all you know is that the length of one side is prime, there are infinitely many possible lengths for the other sides. It's only if you know the other sides are integers that there might be a formula.

But you also mean to say "if the shortest side of a right triangle is prime, and the other sides are of integer length, the other sides will be..." If all you know is that one side is of length 5, say, using your formulas you'd think the other sides need to be 12 and 13. They could also be 3 and 4.

GMATinsight wrote:

I personally find it an UNSUITABLE question for GMAT... GMAT Doesn't expect such tricks from students.


No one will ever need the formulas you posted in a GMAT question, and it would be pointless for a test taker to memorize them. But you certainly don't need those formulas here. You only need to know the difference of squares factorization, and that there is only one way to write 11^2 as a product of two distinct positive integers. The question is well within the scope of the GMAT.


You seem of have less understanding of the word "OPINION"

I hope you prove me wrong by bringing ONE question from authentic source of GMAT questions if you have enough exposure of GMAT.(Refer OG, GMAT PREP etc.)

Another point, whether you take (3, 4, 5) or (5, 12, 13) it fit in both cases. and the forward application doesn't approve of backward application as well. (1 is a natural no. doesn't mean that a natural no. has to be 1)

And yes, It fit's to the cases when the smallest side is prime Number and the all Sides are of Integer length so I must admit you are good at finding faults and not as good in appreciating a new concept and an opinion.


Hi, could you then please elaborate a bit more on the solution proposed above? How can we reach the conclusion that 11 is not the hipotenuse?

Kudos [?]: 3 [0], given: 82

Expert Post
3 KUDOS received
Veritas Prep GMAT Instructor
User avatar
G
Joined: 16 Oct 2010
Posts: 7799

Kudos [?]: 18153 [3], given: 236

Location: Pune, India
Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 01 Nov 2016, 22:04
3
This post received
KUDOS
Expert's post
bazu wrote:

Hi, could you then please elaborate a bit more on the solution proposed above? How can we reach the conclusion that 11 is not the hipotenuse?


The logic of "11 is not the hypotenuse" is quite simple. Note that all three sides of the right triangle are integers so the sides will form a pythagorean triplet.
We know the first two pythagorean triplets are 3-4-5 and 5-12-13. If there were a pythagorean triplet such as a-b-11, we would know it as the second pythagorean triplet and 5-12-13 would be the third. So 11 will not be the hypotenuse but would be one of the legs.
So a^2 + 11^2 = c^2
121 = (c+a)*(c-a)
There are only 2 ways to factorize 121 into pairs of 2 factors each: (1 and 121) , (11, 11)
Sum and difference of two integers cannot both be 11 so c+a = 121 and c-a = 1

Answer (E)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Kudos [?]: 18153 [3], given: 236

Intern
Intern
avatar
B
Joined: 17 Aug 2016
Posts: 49

Kudos [?]: 3 [0], given: 82

Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 02 Nov 2016, 00:44
VeritasPrepKarishma wrote:
bazu wrote:

Hi, could you then please elaborate a bit more on the solution proposed above? How can we reach the conclusion that 11 is not the hipotenuse?


The logic of "11 is not the hypotenuse" is quite simple. Note that all three sides of the right triangle are integers so the sides will form a pythagorean triplet.
We know the first two pythagorean triplets are 3-4-5 and 5-12-13. If there were a pythagorean triplet such as a-b-11, we would know it as the second pythagorean triplet and 5-12-13 would be the third. So 11 will not be the hypotenuse but would be one of the legs.
So a^2 + 11^2 = c^2
121 = (c+a)*(c-a)
There are only 2 ways to factorize 121 into pairs of 2 factors each: (1 and 121) , (11, 11)
Sum and difference of two integers cannot both be 11 so c+a = 121 and c-a = 1

Answer (E)


Thanks you are definitely a star. My knowledge of pythagorean triplet is a bit rusty, I didn't consider that if there is not a triplet (or a multiple) with 11 in the hypotenuse then 11 can't be the hypotenuse of a right triangle given the constraint that all the sides need to be integers

Thanks again

Kudos [?]: 3 [0], given: 82

Intern
Intern
avatar
Joined: 15 Jan 2017
Posts: 5

Kudos [?]: [0], given: 0

Schools: HBS '20
Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 17 Jan 2017, 12:55
Its answer E

1. Check with recycled triangles 3:4:5/6:8:10/5:12:13 --> 11 cannot be the hypotenuse
2. 11 is one of the legs, so the equation is 11²+a²=b² ==> b²-a²=11²
3. Reminds me of recycled quadratic III (a+b)(a-b)=a²-b² and apply to above (works in 99% of cases)
4. (b+a)(b-a)=11²=121 / factorize 121 in factor tree leaves me only with 121 1, so (b+a) must be 121 since a and b are defined as integeres

Time: 50 sec

Kudos [?]: [0], given: 0

Manager
Manager
avatar
B
Joined: 07 May 2015
Posts: 102

Kudos [?]: 15 [0], given: 6

GMAT ToolKit User
Re: A right triangle has sides of a, b, and 11, respectively, [#permalink]

Show Tags

New post 23 Jan 2017, 13:26
anceer wrote:
A right triangle has sides of a, b, and 11, respectively, where a and b are both integers. What is the value of (a + b)?

A. 15
B. 57
C. 93
D. 109
E. 121


So if a and b both are integers, then a+b should also be integer. Now we are asked to find the value of (a+b)^2. I started POE. None of the values is a perfect square (which one square root result into a integer, which should be the value of base a+b) EXCEPT 121.

I am pretty sure it cant be that simple, what am i missing here :)

Kudos [?]: 15 [0], given: 6

Re: A right triangle has sides of a, b, and 11, respectively,   [#permalink] 23 Jan 2017, 13:26

Go to page    1   2    Next  [ 24 posts ] 

Display posts from previous: Sort by

A right triangle has sides of a, b, and 11, respectively,

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.