Last visit was: 19 Nov 2025, 08:21 It is currently 19 Nov 2025, 08:21
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
derekgmat
Joined: 07 Nov 2012
Last visit: 29 Nov 2012
Posts: 11
Own Kudos:
155
 [53]
Given Kudos: 10
Posts: 11
Kudos: 155
 [53]
4
Kudos
Add Kudos
48
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,267
 [26]
11
Kudos
Add Kudos
15
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,994
 [15]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,994
 [15]
9
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
General Discussion
avatar
derekgmat
Joined: 07 Nov 2012
Last visit: 29 Nov 2012
Posts: 11
Own Kudos:
155
 [3]
Given Kudos: 10
Posts: 11
Kudos: 155
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks Karishma

I must admit I am struggling to work through your solution. I looked at the question again and answered it with the approach of working through each of the choices long-hand.

If A, then 15 players means they each will play 14 games (so 14*15), divide the result by two for double counted games:
14*15 = 210
201/2 = 105, not 153, next

If B, 15*16 = 240
240/2 = 120, not 153, next

If C, 16*17 = 274
274/2 = 137, not 153, next

If D, 17*18 = 306
306/2 = 153 ANSWER D

Am I missing any important concepts by answering the question with this long-hand method as opposed to your more structured approach?

Kind regards

Derek
User avatar
Vips0000
User avatar
Current Student
Joined: 15 Sep 2012
Last visit: 02 Feb 2016
Posts: 521
Own Kudos:
1,291
 [1]
Given Kudos: 23
Status:Done with formalities.. and back..
Location: India
Concentration: Strategy, General Management
Schools: Olin - Wash U - Class of 2015
WE:Information Technology (Computer Software)
Products:
Schools: Olin - Wash U - Class of 2015
Posts: 521
Kudos: 1,291
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
derekgmat
Thanks Karishma

I must admit I am struggling to work through your solution. I looked at the question again and answered it with the approach of working through each of the choices long-hand.

If A, then 15 players means they each will play 14 games (so 14*15), divide the result by two for double counted games:
14*15 = 210
201/2 = 105, not 153, next

If B, 15*16 = 240
240/2 = 120, not 153, next

If C, 16*17 = 274
274/2 = 137, not 153, next

If D, 17*18 = 306
306/2 = 153 ANSWER D

Am I missing any important concepts by answering the question with this long-hand method as opposed to your more structured approach?

Kind regards

Derek

both are actually doing the same thing. You approach is a logical one while Karishma's is a structured one. But eventually both are doing same thing:
n*(n-1)/2 = 153 ( or 17*18/2 =153)
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,994
 [4]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,994
 [4]
4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
derekgmat
Thanks Karishma

I must admit I am struggling to work through your solution. I looked at the question again and answered it with the approach of working through each of the choices long-hand.

If A, then 15 players means they each will play 14 games (so 14*15), divide the result by two for double counted games:
14*15 = 210
201/2 = 105, not 153, next

If B, 15*16 = 240
240/2 = 120, not 153, next

If C, 16*17 = 274
274/2 = 137, not 153, next

If D, 17*18 = 306
306/2 = 153 ANSWER D

Am I missing any important concepts by answering the question with this long-hand method as opposed to your more structured approach?

Kind regards

Derek

Your method is absolutely fine. Your logic of multiplying n players by (n-1) games and dividing by 2 is great. The issue with your approach is that you need to calculate for every option. If the numbers were a little larger, you would end up doing calculations a number of times.
For each option, you are doing this calculation (n-1)*n/2
(A) 14*15/2
(B) 15*16/2
etc
You are trying to find the option that will give you the result 153. I have done the same thing. I get (n-1)*n/2 = 153.
Instead of trying all options, you should multiply 153 by 2 to get 306 and then see which two numbers will end in 6. That way you will save a lot of calculations.

14*15 - No
15*16 - No
16*17 - No
17*18 - Yes
18*19 - No

As for the approach used by me to arrive at n*(n-1)/2:
Think of it this way - you make all participants stand in a straight line. The first one comes up and play a game with everyone else i.e. (n-1) games and goes away. The next one comes up and plays a game with all remaining people i.e. (n-2) people and goes away too. This goes on till last two people are left and one comes up, play a game against the other and they both go away. Hence, they end up playing
(n-1) + (n - 2) + .... 3 + 2 + 1 games (total number of games)

You must learn that sum of first m positive integers is given by m(m+1)/2 (very useful to know this)
We need to sum first (n-1) numbers so their sum will be (n-1)n/2

Bunuel has used the combinatorics approach to arrive at n(n-1)/2. There are n people and you want to select as many distinct two people teams as you can (since each person can play against the other only once)
In how many ways can you do that? nC2 ways
nC2 = n(n-1)/2

So the calculation involved is the same in every case. The method of arriving at the equation is different.
User avatar
mbaiseasy
Joined: 13 Aug 2012
Last visit: 29 Dec 2013
Posts: 322
Own Kudos:
2,049
 [2]
Given Kudos: 11
Concentration: Marketing, Finance
GPA: 3.23
Posts: 322
Kudos: 2,049
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
derekgmat
If each participant of a chess tournament plays exactly one game with each of the remaining participants, then 153 games will be played during the tournament. Find the number of participants.

A. 15
B. 16
C. 17
D. 18
E. 19

\(\frac{P!}{2!(P-2)!}=153\)
\(\frac{P * (P-1) * (P-2)!}{(P-2)!}=2*9*17\)
\(P*(P-1) = 18*17\)
\(P = 18\)

Answer: D
User avatar
deepri0812
Joined: 05 Jun 2012
Last visit: 16 Dec 2014
Posts: 22
Own Kudos:
28
 [1]
WE:Marketing (Retail: E-commerce)
Posts: 22
Kudos: 28
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
derekgmat
If each participant of a chess tournament plays exactly one game with each of the remaining participants, then 153 games will be played during the tournament. Find the number of participants.

A. 15
B. 16
C. 17
D. 18
E. 19


Num of games - 153, The total number of players that can be chosen as a pair would be nC2.

Now look through the options & start form the middle number as the options are in ascending order - 17C2 = 17*16/2 = 6 as last digit (17 *8) ignore
Next number 18c2 = 18*17/2 = 3 as last digit this is the answer

Choice D
User avatar
Temurkhon
Joined: 23 Jan 2013
Last visit: 06 Apr 2019
Posts: 412
Own Kudos:
314
 [1]
Given Kudos: 43
Schools: Cambridge'16
Schools: Cambridge'16
Posts: 412
Kudos: 314
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
x!/2!*(x-2)!=153, so

Backsolving looks better:

get C=17
17!/2!*15!=17*16/2=136

go D=18
18!/2!*16!=18*17/2=153 (correct)

D
User avatar
SandhyAvinash
Joined: 05 Oct 2016
Last visit: 19 Sep 2019
Posts: 68
Own Kudos:
136
 [1]
Given Kudos: 135
Location: United States (OH)
GPA: 3.58
Posts: 68
Kudos: 136
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
derekgmat
If each participant of a chess tournament plays exactly one game with each of the remaining participants, then 153 games will be played during the tournament. Find the number of participants.

A. 15
B. 16
C. 17
D. 18
E. 19

We are basically told that we can choose 153 groups of two players out of n players, thus \(C^2_n=153\) --> \(\frac{n!}{(n-2)!2!}=153\) --> \(\frac{(n-1)n}{2}=153\) --> \((n-1)n=306\) --> \(n=18\).

Answer: D.

Similar questions to practice:
https://gmatclub.com/forum/how-many-diag ... 01540.html
https://gmatclub.com/forum/if-10-persons ... 10622.html
https://gmatclub.com/forum/10-business-e ... 26163.html
https://gmatclub.com/forum/how-many-diff ... 29992.html
https://gmatclub.com/forum/15-chess-play ... 55939.html
https://gmatclub.com/forum/there-are-5-c ... 27235.html

Hope it helps.

bunuel how did you simply this equation?
User avatar
craveyourave
Joined: 26 May 2017
Last visit: 23 Jun 2019
Posts: 22
Own Kudos:
Given Kudos: 25
GMAT 1: 620 Q48 V27
GMAT 1: 620 Q48 V27
Posts: 22
Kudos: 54
Kudos
Add Kudos
Bookmarks
Bookmark this Post
derekgmat
If each participant of a chess tournament plays exactly one game with each of the remaining participants, then 153 games will be played during the tournament. Find the number of participants.

A. 15
B. 16
C. 17
D. 18
E. 19

You can also approach the question with combinations.

Let's say there are n people playing chess. You need to select 2 people from n people.

Number of ways of doing that is
nC2 = n!/(n-2)!2!

Reducing the above equation you get
n(n-1)/2 number of ways.

Now, n(n-1)/2 = 153
--> n(n-1) = 306

Try different options that fit the criteria. Quick method is to notice that the multiplication of n * n-1 should give a units digit of 6.

Answer D = 18, (18*17 = 306)




Sent from my iPhone using GMAT Club Forum mobile app
User avatar
SandhyAvinash
Joined: 05 Oct 2016
Last visit: 19 Sep 2019
Posts: 68
Own Kudos:
Given Kudos: 135
Location: United States (OH)
GPA: 3.58
Posts: 68
Kudos: 136
Kudos
Add Kudos
Bookmarks
Bookmark this Post
craveyourave
derekgmat
If each participant of a chess tournament plays exactly one game with each of the remaining participants, then 153 games will be played during the tournament. Find the number of participants.

A. 15
B. 16
C. 17
D. 18
E. 19

You can also approach the question with combinations.

Let's say there are n people playing chess. You need to select 2 people from n people.

Number of ways of doing that is
nC2 = n!/(n-2)!2!

Reducing the above equation you get
n(n-1)/2 number of ways.

Now, n(n-1)/2 = 153
--> n(n-1) = 306

Try different options that fit the criteria. Quick method is to notice that the multiplication of n * n-1 should give a units digit of 6.

Answer D = 18, (18*17 = 306)




Sent from my iPhone using GMAT Club Forum mobile app

please simplify the above equation in more steps.
User avatar
generis
User avatar
Senior SC Moderator
Joined: 22 May 2016
Last visit: 18 Jun 2022
Posts: 5,272
Own Kudos:
37,388
 [1]
Given Kudos: 9,464
Expert
Expert reply
Posts: 5,272
Kudos: 37,388
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
SandhyAvinash
craveyourave
derekgmat
If each participant of a chess tournament plays exactly one game with each of the remaining participants, then 153 games will be played during the tournament. Find the number of participants.

A. 15
B. 16
C. 17
D. 18
E. 19
You can also approach the question with combinations.

Let's say there are n people playing chess. You need to select 2 people from n people.

Number of ways of doing that is
nC2 = n!/(n-2)!2!

Reducing the above equation you get
n(n-1)/2 number of ways.

Now, n(n-1)/2 = 153
--> n(n-1) = 306

Try different options that fit the criteria. Quick method is to notice that the multiplication of n * n-1 should give a units digit of 6.

Answer D = 18, (18*17 = 306)
please simplify the above equation in more steps.
SandhyAvinash , maybe this post will help.

Here are a couple of sites I found that discuss the simplification of factorials with variables. . .

This site is thorough and easy to understand:

https://chilimath.com/lessons/intermediate-algebra/simplifying-factorials-with-variables/

This next site's treatment is shorter than that above, but I have seen others link to this site. (Other experts may have linked to chilimath as well. I ran the math as it was explained on chilimath. The math is fine.)

https://www.purplemath.com/modules/factorial.htm

Hope they help!

P.S. I think questions here work better if you type the symbol @ before the username in your post. The name will show up in blue, like this SandhyAvinash.

If the person follows topics via email, s/he will get notified. S/he will not get notified with just SandhyAvinash, for example.:-)
User avatar
SandhyAvinash
Joined: 05 Oct 2016
Last visit: 19 Sep 2019
Posts: 68
Own Kudos:
Given Kudos: 135
Location: United States (OH)
GPA: 3.58
Posts: 68
Kudos: 136
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thank you so much. I really appreciate your help sir.

SandhyAvinash
User avatar
generis
User avatar
Senior SC Moderator
Joined: 22 May 2016
Last visit: 18 Jun 2022
Posts: 5,272
Own Kudos:
Given Kudos: 9,464
Expert
Expert reply
Posts: 5,272
Kudos: 37,388
Kudos
Add Kudos
Bookmarks
Bookmark this Post
SandhyAvinash
Thank you so much. I really appreciate your help sir.

SandhyAvinash
You're very welcome. One last thing.

When you "flag" someone by typing the @ symbol, use it before THEIR name (not yours). All these rules can get confusing. You are very polite, which I appreciate. Cheers!
User avatar
SandhyAvinash
Joined: 05 Oct 2016
Last visit: 19 Sep 2019
Posts: 68
Own Kudos:
Given Kudos: 135
Location: United States (OH)
GPA: 3.58
Posts: 68
Kudos: 136
Kudos
Add Kudos
Bookmarks
Bookmark this Post
genxer123
SandhyAvinash
Thank you so much. I really appreciate your help sir.

SandhyAvinash
You're very welcome. One last thing.

When you "flag" someone by typing the @ symbol, use it before THEIR name (not yours). All these rules can get confusing. You are very polite, which I appreciate. Cheers!

Oh thank you i got you :-) genxer123
User avatar
devarshi9283
Joined: 25 Jul 2011
Last visit: 06 Oct 2025
Posts: 54
Own Kudos:
107
 [1]
Given Kudos: 1,059
Location: India
Concentration: Strategy, Operations
GMAT 1: 740 Q49 V41
GPA: 3.5
WE:Engineering (Energy)
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
derekgmat
If each participant of a chess tournament plays exactly one game with each of the remaining participants, then 153 games will be played during the tournament. Find the number of participants.

A. 15
B. 16
C. 17
D. 18
E. 19

It's a 10 second problem once you understand that the question is simply asking if nC2=153 then what is the value of n?

consider only 2 players; A and B
then no of matches "If each participant of a chess tournament plays exactly one game with each of the remaining participants"=1 (A vs B)
as any particular match involves 2 players here..because each player plays against each of the remaining participants separately...
so we only have to select 2 players...a simple combination.. to count a possible match from amongst the available players...

If there are 2 players only...then selecting 2 out of 2=2C2=1 (AB)
if there are 3 players only....then selecting 2 out of 3=3C2=3 (AB,AC,BC)
if there are 4 players only....then selecting 2 out of 4=4C2=6 (AB,AC,AD,BC,BD,CD)
Similarly...
if there are n players only....then selecting 2 out of n=nC2=n!/2!(n-2)!

here..nC2=n!/2!(n-2)!=153...put values back from options..we get n=18

Further....had a match involved 3 players rather than 2....then the no. of matches would have been nC3...
i.e., selecting 3 out of n players to play a match.

Similarly....had a match involved 4 players rather than 2....then the no. of matches would have been nC4...
i.e., selecting 4 out of n players to play a match.

Thus,
had a match involved r players rather than 2....then the no. of matches would have been nCr...
i.e., selecting r out of n players to play a match....


If each participant of a chess tournament plays exactly 2 game with each of the remaining participants=just multiply nC2 with 2..
User avatar
Shrey9
User avatar
Current Student
Joined: 23 Apr 2018
Last visit: 02 Apr 2022
Posts: 126
Own Kudos:
Given Kudos: 176
Products:
Posts: 126
Kudos: 74
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasKarishma
derekgmat
Thanks Karishma

I must admit I am struggling to work through your solution. I looked at the question again and answered it with the approach of working through each of the choices long-hand.

If A, then 15 players means they each will play 14 games (so 14*15), divide the result by two for double counted games:
14*15 = 210
201/2 = 105, not 153, next

If B, 15*16 = 240
240/2 = 120, not 153, next

If C, 16*17 = 274
274/2 = 137, not 153, next

If D, 17*18 = 306
306/2 = 153 ANSWER D

Am I missing any important concepts by answering the question with this long-hand method as opposed to your more structured approach?

Kind regards

Derek

Your method is absolutely fine. Your logic of multiplying n players by (n-1) games and dividing by 2 is great. The issue with your approach is that you need to calculate for every option. If the numbers were a little larger, you would end up doing calculations a number of times.
For each option, you are doing this calculation (n-1)*n/2
(A) 14*15/2
(B) 15*16/2
etc
You are trying to find the option that will give you the result 153. I have done the same thing. I get (n-1)*n/2 = 153.
Instead of trying all options, you should multiply 153 by 2 to get 306 and then see which two numbers will end in 6. That way you will save a lot of calculations.

14*15 - No
15*16 - No
16*17 - No
17*18 - Yes
18*19 - No

As for the approach used by me to arrive at n*(n-1)/2:
Think of it this way - you make all participants stand in a straight line. The first one comes up and play a game with everyone else i.e. (n-1) games and goes away. The next one comes up and plays a game with all remaining people i.e. (n-2) people and goes away too. This goes on till last two people are left and one comes up, play a game against the other and they both go away. Hence, they end up playing
(n-1) + (n - 2) + .... 3 + 2 + 1 games (total number of games)

You must learn that sum of first m positive integers is given by m(m+1)/2 (very useful to know this)
We need to sum first (n-1) numbers so their sum will be (n-1)n/2

Bunuel has used the combinatorics approach to arrive at n(n-1)/2. There are n people and you want to select as many distinct two people teams as you can (since each person can play against the other only once)
In how many ways can you do that? nC2 ways
nC2 = n(n-1)/2

So the calculation involved is the same in every case. The method of arriving at the equation is different.



using your approach,
we can instead save time and see which units digit gives 3 in the end.. 17*9 gives a 3 (dividing by 2 before multiplying the bigger terms) therefore 18 (D) is the answer
avatar
rohan994
Joined: 03 Nov 2016
Last visit: 20 Nov 2020
Posts: 14
Own Kudos:
Given Kudos: 23
GMAT 1: 660 Q47 V34
GMAT 1: 660 Q47 V34
Posts: 14
Kudos: 8
Kudos
Add Kudos
Bookmarks
Bookmark this Post
My approach was

if there are x players then and each player plays with every other participant, then the each player will play (x-1) games.

Therefore the total number of games = {x(x-1)}/2 as Player A playing with player B is same as Player B playing with Player A.

therefore

x(x-1)*1/2 = 153
x (x-1) = 306, => x=18

P.s :here is it is easy to spot that from the options that with x =18 you will get the last digit as 6. saves on those additional 5 seconds.
User avatar
100mitra
Joined: 29 Apr 2019
Last visit: 06 Jul 2022
Posts: 714
Own Kudos:
Given Kudos: 49
Status:Learning
Posts: 714
Kudos: 629
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Correct Option : D - 18

Method : Combination :
= [n!] / [2x (n-2)] = 153
= [n!] / [(n-2)] = 306

Method 1 :
A - 14+13+12......3+2+1 = 105 x 2 = 210 - Wrong
B - 15+14+13+12......3+2+1 = 120 x 2 = 240 - Wrong
C - 16+15+14+13+12......3+2+1 = 136 x 2 = 272 Wrong
D - 17+16+15+14+13+12......3+2+1 = 105 x 2 = 153 x 2 = 306 - Correct
E - 18+17+16+15+14+13+12......3+2+1 = 171 x 2 = 343 - Wrong

Method 2 :
14x15 - Wrong
15x16 - Wrong
16x17 - Wrong
17x18 - Correct
18x19 - Wrong
 1   2   
Moderators:
Math Expert
105389 posts
Tuck School Moderator
805 posts