GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 15 Dec 2018, 06:24

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • Free GMAT Strategy Webinar

     December 15, 2018

     December 15, 2018

     07:00 AM PST

     09:00 AM PST

    Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.
  • $450 Tuition Credit & Official CAT Packs FREE

     December 15, 2018

     December 15, 2018

     10:00 PM PST

     11:00 PM PST

    Get the complete Official GMAT Exam Pack collection worth $100 with the 3 Month Pack ($299)

If y is the smallest positive integer such that 3,150

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Intern
Intern
User avatar
Joined: 17 May 2008
Posts: 14
If y is the smallest positive integer such that 3,150  [#permalink]

Show Tags

New post Updated on: 12 Jun 2013, 03:33
3
20
00:00
A
B
C
D
E

Difficulty:

  15% (low)

Question Stats:

79% (01:22) correct 21% (01:47) wrong based on 1250 sessions

HideShow timer Statistics

If y is the smallest positive integer such that 3,150 multiplied by y is the square of an integer, then y must be

A. 2
B. 5
C. 6
D. 7
E. 14

_________________

Impossible is nothing...


Originally posted by mrwaxy on 12 Jun 2008, 04:00.
Last edited by Bunuel on 12 Jun 2013, 03:33, edited 3 times in total.
Added the OA
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51218
Re: If y is the smallest positive integer such that 3,150  [#permalink]

Show Tags

New post 28 Jan 2012, 17:00
9
12
mrwaxy wrote:
If y is the smallest positive integer such that 3,150 multiplied by y is the square of an integer, then y must be
A. 2
B. 5
C. 6
D. 7
E. 14

Detailed explanation would be appreciated.


\(3,150=2*3^2*5^2*7\), now \(3,150*y\) to be a perfect square \(y\) must complete the odd powers of 2 and 7 to even number (perfect square has even powers of its primes), so the least value of \(y\) is 2*7=14. In this case \(3,150y=(2*3^2*5^2*7)*(2*7)=(2*3*5*7)^2=perfect \ square\).

Answer: E.

Similar questions to practice:
if-m-and-n-are-positive-integer-and-1800m-n3-what-is-108985.html
property-of-integers-104272.html
if-x-and-y-are-positive-integers-and-180x-y-100413.html
number-properties-92562.html
can-someone-answer-this-and-tell-me-why-92066.html
og-quantitative-91750.html
division-factor-88388.html
if-5400mn-k4-where-m-n-and-k-are-positive-integers-109284.html

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

General Discussion
Senior Manager
Senior Manager
avatar
Joined: 29 Aug 2005
Posts: 251
Re: PS - S26 q30  [#permalink]

Show Tags

New post 13 Jun 2008, 03:35
IMO E should be the answer for this

i just tried plugging in the numbers and found out that

14*3150 = 44, 100, which is a square of 210

HTH
_________________

The world is continuous, but the mind is discrete

Manager
Manager
User avatar
Joined: 27 Oct 2011
Posts: 138
Location: United States
Concentration: Finance, Strategy
GPA: 3.7
WE: Account Management (Consumer Products)
Re: If y is the smallest positive integer such that 3,150  [#permalink]

Show Tags

New post 28 Jan 2012, 16:42
1
2
answer E. factor out the number and find any prime numbers that are not paired. 7 & 2.
_________________

DETERMINED TO BREAK 700!!!

Intern
Intern
avatar
Joined: 26 Jan 2012
Posts: 3
Location: United States
Concentration: General Management, Marketing
GMAT 1: 690 Q48 V37
WE: Design (Retail)
Re: If y is the smallest positive integer such that 3,150  [#permalink]

Show Tags

New post 30 Jan 2012, 08:46
factorise 3150, to find out the missing doubles... 3150 = 5x5x3x3x2x7... so 2x7=14... when multiplied to 3150, will make it a perfect square... answere is E
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51218
Re: If y is the smallest positive integer such that 3,150  [#permalink]

Show Tags

New post 12 Jun 2013, 04:25
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

Theory on Number Properties: math-number-theory-88376.html

All DS Number Properties Problems to practice: search.php?search_id=tag&tag_id=38
All PS Number Properties Problems to practice: search.php?search_id=tag&tag_id=59

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Joined: 28 Feb 2012
Posts: 110
Concentration: Strategy, International Business
Schools: INSEAD Jan '13
GPA: 3.9
WE: Marketing (Other)
GMAT ToolKit User
Re: If y is the smallest positive integer such that 3,150  [#permalink]

Show Tags

New post 13 Jun 2013, 01:07
1
mrwaxy wrote:
If y is the smallest positive integer such that 3,150 multiplied by y is the square of an integer, then y must be

A. 2
B. 5
C. 6
D. 7
E. 14


In such questions we need to break the number into the smallest possible prime factors. So the smallest prime factors of 3150 are:
315*10=63*5*2*5=7*9*5*2*5=7*3*3*5*2*5. In order to get a square of an integer we have to have at least two identical primes. In our case we have 3*3 and 5*5 corresponding to this condition but not 2*7 so our smallest number should be 14.

Answer is E
_________________

If you found my post useful and/or interesting - you are welcome to give kudos!

Director
Director
User avatar
Joined: 14 Dec 2012
Posts: 754
Location: India
Concentration: General Management, Operations
GMAT 1: 700 Q50 V34
GPA: 3.6
GMAT ToolKit User
Re: if y is the smallest positive interger such that 3150 multip  [#permalink]

Show Tags

New post 29 Aug 2013, 00:35
1
kumar83 wrote:
if y is the smallest positive interger such that 3150 multiplied by y is the square of an interger, that Y must be

A) 2
B) 5
C) 6
D) 7
E) 14


Kindly Explain.


3150 =\(2*3^2*5^2*7\)
For it to be perfect square all the prime number should be least raised to the power 2
in 3150 ...only 2 and 7 needs to be multiplied so that all prime will be raised power 2
hence least value of \(4y = 2*7 = 14\)

hence E
_________________

When you want to succeed as bad as you want to breathe ...then you will be successfull....

GIVE VALUE TO OFFICIAL QUESTIONS...



GMAT RCs VOCABULARY LIST: http://gmatclub.com/forum/vocabulary-list-for-gmat-reading-comprehension-155228.html
learn AWA writing techniques while watching video : http://www.gmatprepnow.com/module/gmat-analytical-writing-assessment
: http://www.youtube.com/watch?v=APt9ITygGss

Intern
Intern
avatar
Joined: 04 Jun 2014
Posts: 47
Re: If y is the smallest positive integer such that 3,150  [#permalink]

Show Tags

New post 22 Jul 2014, 03:18
Hello,

can anyone help me with this type of question? I don't get it why the remaining numbers, 7 and 2, are the smallest positive integer y. Which chapter in the MGMAT books should i restudy to deal with this kind of problem? I don't understand the explanation in the OG which says: "To be a perfect square, 3,150y must have an even number of each of its prime factors."

Any help is appreciated!
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51218
Re: If y is the smallest positive integer such that 3,150  [#permalink]

Show Tags

New post 22 Jul 2014, 03:31
lou34 wrote:
Hello,

can anyone help me with this type of question? I don't get it why the remaining numbers, 7 and 2, are the smallest positive integer y. Which chapter in the MGMAT books should i restudy to deal with this kind of problem? I don't understand the explanation in the OG which says: "To be a perfect square, 3,150y must have an even number of each of its prime factors."

Any help is appreciated!


Have you checked this: if-y-is-the-smallest-positive-integer-such-that-65323.html#p1035828

Similar questions to practice:
if-n-is-a-positive-integer-and-n-2-is-divisible-by-96-then-127364.html
if-n-is-a-positive-integer-and-n-2-is-divisible-by-72-then-90523.html
a-certain-clock-marks-every-hour-by-striking-a-number-of-tim-91750.html
if-m-and-n-are-positive-integer-and-1800m-n3-what-is-108985.html
if-x-and-y-are-positive-integers-and-180x-y-100413.html
n-is-a-positive-integer-and-k-is-the-product-of-all-integer-104272.html
if-x-is-a-positive-integer-and-x-2-is-divisible-by-32-then-88388.html
if-n-and-y-are-positive-integers-and-450y-n-92562.html
if-5400mn-k-4-where-m-n-and-k-are-positive-integers-109284.html
if-a-and-n-are-integers-and-a-2-24n-then-n-must-be-173533.html
if-n-and-y-are-positive-integers-and-450y-n-92562.html
if-n-and-y-are-positive-integers-and-450y-n-92562.html

Hope this helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Retired Moderator
avatar
P
Joined: 04 Aug 2016
Posts: 500
Location: India
Concentration: Leadership, Strategy
GPA: 4
WE: Engineering (Telecommunications)
Premium Member
Re: If y is the smallest positive integer such that 3,150  [#permalink]

Show Tags

New post 16 Oct 2016, 22:54
3150 = 5*5*3*3*2*7

To be a perfect square y needs to be 2*7=14
CEO
CEO
User avatar
D
Joined: 11 Sep 2015
Posts: 3237
Location: Canada
Re: If y is the smallest positive integer such that 3,150  [#permalink]

Show Tags

New post 24 Aug 2017, 11:03
Top Contributor
mrwaxy wrote:
If y is the smallest positive integer such that 3,150 multiplied by y is the square of an integer, then y must be

A. 2
B. 5
C. 6
D. 7
E. 14


Key concept: The prime factorization of a perfect square (the square of an integer) will have an EVEN number of each prime.
For example, 36 = (2)(2)(3)(3)
And 400 = (2)(2)(2)(2)(5)(5)

Likewise, 3150y must have an EVEN number of each prime in its prime factorization.
So, 3150y = (2)(3)(3)(5)(5)(7)y
We have an EVEN number of 3's and 7's, but we have a single 2 and a single 7.
If y = (2)(7), then we get a perfect square.

That is: 3150y = (2)(2)(3)(3)(5)(5)(7)(7)

So, if y = 14, then 3150y is a perfect square.

Answer:

RELATED VIDEO FROM OUR COURSE

_________________

Test confidently with gmatprepnow.com
Image

Intern
Intern
User avatar
B
Joined: 28 Apr 2016
Posts: 41
Location: United States
GMAT 1: 780 Q51 V47
GPA: 3.9
Re: If y is the smallest positive integer such that 3,150  [#permalink]

Show Tags

New post 25 Aug 2018, 23:30
I wanted to share my GMAT Timing Tips for this question (the links below include growing lists of questions that you can use to practice these tips):

Prime factors of a perfect square, perfect cube, etc.: As others in this thread have pointed out, we need to know that all prime factors of a perfect square have exponents that are even. If we find that any of the prime factors of 3,150 do not have even exponents, y will need to contain each of those prime factors, so that the prime factorization of 3,150*y will have an even exponent for each of those prime factors.

Prime factorization: In order to determine the prime factors of y, we need to do the prime factorization of 3,150, so let's try to do it as efficiently as possible. Because factors of 10 and 5 are easy to see, I recommend starting by factoring 3,150 into 315*10, then 63*5*2*5. We can also recognize that 63 = 9*7 = 3^2 *7. This means that the prime factorization of 3,150 is 2 * 3^2 * 5^2 * 7. Since there are odd powers of 2 and 7, y must contain factors of 2 and 7, and the smallest possible value of y is 2*7 = 14.

Please let me know if you have any questions, or if you would like me to post a video solution!
_________________

Online GMAT tutor with a 780 GMAT score. Harvard graduate.

Please read and share my free GMAT Timing Strategy Guide!

GMAT Club Bot
Re: If y is the smallest positive integer such that 3,150 &nbs [#permalink] 25 Aug 2018, 23:30
Display posts from previous: Sort by

If y is the smallest positive integer such that 3,150

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


cron
Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.