Last visit was: 21 Jun 2025, 01:44 It is currently 21 Jun 2025, 01:44
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 21 June 2025
Posts: 102,218
Own Kudos:
Given Kudos: 93,961
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,218
Kudos: 734,106
 [1226]
236
Kudos
Add Kudos
990
Bookmarks
Bookmark this Post
User avatar
h2polo
Joined: 13 Aug 2009
Last visit: 08 Mar 2012
Posts: 102
Own Kudos:
Given Kudos: 16
Posts: 102
Kudos: 364
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
GMAT TIGER
Joined: 29 Aug 2007
Last visit: 17 Aug 2011
Posts: 1,013
Own Kudos:
1,771
 [1]
Given Kudos: 19
Posts: 1,013
Kudos: 1,771
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 21 June 2025
Posts: 102,218
Own Kudos:
734,106
 [2]
Given Kudos: 93,961
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,218
Kudos: 734,106
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
gmat620
Bunuel, thanks for the questions. Please provide the OA's too. It would be great if you can provide them soon. I am having my GMAT this week, so kinda tensed and impatient. Also, I am yet to give my MGMAT CAT's, so tell me whether should I solve the questions on the forum because if the questions are from the MGMAT CAT's or Gmat Prep then it may overestimate my result. I would appreciate your response. Thanks once again.

These questions are from various sources. Couple of questions might be from MGMAT CAT or Gmat Prep, but not more than that.

I'll provide OA in a day or two, after discussions. Tell me if you want the answers for the specific questions earlier than that and I'll mail you.
User avatar
h2polo
Joined: 13 Aug 2009
Last visit: 08 Mar 2012
Posts: 102
Own Kudos:
Given Kudos: 16
Posts: 102
Kudos: 364
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
1. If 6*x*y = x^2*y + 9*y, what is the value of xy?
(1) y – x = 3
(2) x^3< 0

Not sure about this one...

First I reduced the given equation (divided out the y) and solved for x:
6*x*y = x^2*y + 9*y
6*x = x^2 + 9
0 = x^2 - 6*x + 9
0 = (x-3)^2
x = 3

Statement 1:

y-x=3
y-3=3
y=6
xy=3*6=18

SUFFICIENT

Statement 2:

x^3<0

We have no idea what the value of y is from this statement. The only thing that made me look twice was the face that if x^3 is true, then x should be a negative value... did I calculate the value of x incorrectly above?

INSUFFICIENT

ANSWER: A.
User avatar
h2polo
Joined: 13 Aug 2009
Last visit: 08 Mar 2012
Posts: 102
Own Kudos:
Given Kudos: 16
Posts: 102
Kudos: 364
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
2. If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1

Another way of looking at the problem is to ask, is x<0? Because if it is, then we know that y is zero. The only case in which y will not be zero is if x is positive.

Statement 1:

x<0... answers my question above.

SUFFICIENT

Statement 2:

y<1

Because y is an integer, it must be one of the following values: 0, -1, -2, -3...

BUT |x| + x can never be a negative value. The lowest value that it can be is 0.

Hence, y can never be negative and the only possible value it can be then is 0.

SUFFICIENT

ANSWER: D.
User avatar
Marco83
Joined: 08 Nov 2009
Last visit: 17 Dec 2010
Posts: 25
Own Kudos:
118
 [3]
Posts: 25
Kudos: 118
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
3)
I) (x+y)^2=9a x^2+y^2=9a-2xy NS
II) (x-y)^2=a x^2+y^2=a+2xy NS
Together 2(x^2+y^2)=10a x^2+y^2=5a
If either x or y are larger than 0, the stem would be true, but if they’re both zero the stem is false, hence E

4)
I don’t get the two clues; they seem to be mutually exclusive

5)
I) 3|x^2-4|=y-2 either y=3x^2-10 or y=14-3x^2 NS
II) |3-y|=11 either y=-8 or y=14 NS
Together -8=3x^2-10 so 3x^2=2 ok 14=3x^2-10 so 3x^2=28 ok, hence E

6)
I) x+1>0 so x={0, 1, 2, …} NS
II) xy>0 so x and y have the same sign and none of them is zero NS
Together, x={1, 2, 3, ..} and y has the same sign, hence C

7) |x+2|=|y+2| either x+2=y+2 or x+2=-y-2 (the other two combinations can be transformed into these by multiplying by -1)
Reordering: x-y=0 or x+y=-4
I)xy<0, hence x and y have different signs and none of them is zero. The only possibility is x+y=-4 S
II) x>2, y<2 hence x#y. The only possibility is x+y=-4 S, therefore D

8)a*b#0, hence a and b are both non-zero
I) |a*b|=a*b a and b have the same sign and the stem is always true S
II) |a|/|b|=|a/b| this is true regardless of the values of a and b, and nothing can be said about the stem NS, therefore A

9)
I) –n=|-n| n<=0 NS
II) n^2=16 n=+/-4 NS
Together n=-4 therefore C

10)n#0
I) n^2>16, so |n|>4 S
II) 1/|n|>n true for n<-1 NS, therefore A

11) Plugging in numbers I get B, but there’s no rime or reason to my solution

12)
I) –s<=r<=s obviously NS. Since s>=-s, s is either positive or zero
II)|r|>=s obviously NS
Together: I) tells us that s>=0; II) tells us that r>=s or r<=-s. The only case in which I and II are simultaneously satisfied is r=s, therefore C

13) x=(0:2) with 0 and 2 excluded
I) (x-1)^2<=1, hence x=[0:2] with 0 and 2 included, hence NS
II) x^2-1>0 x<-1 or x>1. For x=1.5 the stem is true, for x=3 it is false, hence NS
Together, for x=1.5 the stem is true, for x=2 it is false, hence E
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 21 June 2025
Posts: 102,218
Own Kudos:
734,106
 [1]
Given Kudos: 93,961
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,218
Kudos: 734,106
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Marco83
4)
I don’t get the two clues; they seem to be mutually exclusive

Yes there was a typo in 4. Edited. Great job Marco83. Even though not every answer is correct, you definitely know how to deal with this kind of problems.
User avatar
h2polo
Joined: 13 Aug 2009
Last visit: 08 Mar 2012
Posts: 102
Own Kudos:
364
 [3]
Given Kudos: 16
Posts: 102
Kudos: 364
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

Statement 1:

2(1)-2(1/2)=1 , x,y are both positve

2(1/2)-2(-1/2)=1 x is positive, y is negative

INSUFFICIENT

Statement 2:

Either (x,y) are both positive or both negative

INSUFFICENT

Statement 1 and 2:

With both requirements x must be greater than y and satisfy this equation: 2x-2y=1

2(1)-2(1/2)=1 , x,y are both positve and x>y

2(1/2)-2(-1/2)=1 x is positive, y is negative and x>y

Answer: E
User avatar
ichha148
Joined: 16 Apr 2009
Last visit: 23 Feb 2023
Posts: 135
Own Kudos:
Given Kudos: 14
Posts: 135
Kudos: 484
Kudos
Add Kudos
Bookmarks
Bookmark this Post
12. Is r=s?

(1) -s<=r<=s

(2) |r|>=s


E – for this - both can be true or false when 0< r < 1
For example , take r as 0.8
S = 0.86 i.e. -0.86 < = 0.8 < = 0.86
|0.8|>= 0.86 i.e. 1 >= 0.86
Combining , any values can be taken , on values > =1 , both r and s
will be same

3. Is x^2 + y^2 > 4a?

(1) (x + y)^2 = 9a

(2) (x – y)^2 = a
C is the answer

Combined both and the equation will give x^2 + y^2 = 5a
User avatar
h2polo
Joined: 13 Aug 2009
Last visit: 08 Mar 2012
Posts: 102
Own Kudos:
364
 [3]
Given Kudos: 16
Posts: 102
Kudos: 364
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
5. What is the value of y?
(1) 3|x^2 -4| = y - 2
(2) |3 - y| = 11

Statement 1:

Two equations, two unknowns... INSUFFICIENT

Statement 2:

|3 - y| = 11
(3-y)=11 or (3-y)=-11
y=-8, 14

INSUFFICIENT

Statements 1 and 2:

y must be 14 because 3|x^2 -4| can never be a negative value (no matter what you plug in for x, you will get a positve value because of the absolute value signs).

SUFFICIENT

ANSWER: C.
User avatar
h2polo
Joined: 13 Aug 2009
Last visit: 08 Mar 2012
Posts: 102
Own Kudos:
364
 [1]
Given Kudos: 16
Posts: 102
Kudos: 364
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
6. If x and y are integer, is y > 0?
(1) x +1 > 0
(2) xy > 0

Statement 1:

Nothing about y... INSUFFICIENT

Statement 2:

two equations, two unknowns... INSUFFICIENT

Statements 1 and 2:

From x +1 > 0 and the fact that x must be an integer, we know that x must be [0,1,2,3...]

Because we know that xy > 0, we know that x cannot be 0... therefore y must be a positive integer!

SUFFICIENT

ANSWER: C.
User avatar
Marco83
Joined: 08 Nov 2009
Last visit: 17 Dec 2010
Posts: 25
Own Kudos:
Posts: 25
Kudos: 118
Kudos
Add Kudos
Bookmarks
Bookmark this Post
4)
I) 2x-2y=1 so y=x-1/2 NS
II)x/y>0 so x and y have the same sign and the modulus of x has to be larger than the modulus of y NS
Together, to satisfy both clues needs to be larger than 1/2 and x becomes larger than 0; the stem is true, therefore C
User avatar
Marco83
Joined: 08 Nov 2009
Last visit: 17 Dec 2010
Posts: 25
Own Kudos:
Posts: 25
Kudos: 118
Kudos
Add Kudos
Bookmarks
Bookmark this Post
h2polo
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

Statement 1:

2(1)-2(1/2)=1 , x,y are both positve

2(1/2)-2(-1/2)=1 x is positive, y is negative

INSUFFICIENT

Statement 2:

Either (x,y) are both positive or both negative

INSUFFICENT

Statement 1 and 2:

With both requirements x must be greater than y and satisfy this equation: 2x-2y=1

2(1)-2(1/2)=1 , x,y are both positve and x>y

2(1/2)-2(-1/2)=1 x is positive, y is negative and x>y

Answer: E

Your last choice of numbers: x=1/2, y=-1/2 does not satisfy clue I, because 2*(1/2)-2*(-1/2)=2, not 1
User avatar
Marco83
Joined: 08 Nov 2009
Last visit: 17 Dec 2010
Posts: 25
Own Kudos:
118
 [1]
Posts: 25
Kudos: 118
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ichha148
12. Is r=s?

(1) -s<=r<=s

(2) |r|>=s


E – for this - both can be true or false when 0< r < 1
For example , take r as 0.8
S = 0.86 i.e. -0.86 < = 0.8 < = 0.86
|0.8|>= 0.86 i.e. 1 >= 0.86
Combining , any values can be taken , on values > =1 , both r and s
will be same

Taking the modulus does not mean rounding up to the nearest integer; it means removing the negative sign if present. |0.8|<0.86

ichha148
3. Is x^2 + y^2 > 4a?

(1) (x + y)^2 = 9a

(2) (x – y)^2 = a
C is the answer

Combined both and the equation will give x^2 + y^2 = 5a

Nowhere it is said that x and y are non-zero. If x and y are zero, 5a=0, therefore a=0, and the stem is false (x^2+y^2=0)
User avatar
sriharimurthy
Joined: 29 Oct 2009
Last visit: 23 Apr 2025
Posts: 126
Own Kudos:
3,002
 [3]
Given Kudos: 18
GMAT 1: 750 Q50 V42
GMAT 1: 750 Q50 V42
Posts: 126
Kudos: 3,002
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
1. If 6*x*y = x^2*y + 9*y, what is the value of xy?
(1) y – x = 3
(2) x^3< 0

\(6*x*y = x^2*y + 9*y\)
\(6*x = x^2 + 9 = 0\)
\(x^2 - 6*x + 9 = 0\)
\((x-3)^2 = 0\)
\(x = 3\)

St. (1) : y - x = 3
y = 6
Sufficient.

St. (2) : x^3 < 0
Invalid statement. Does not give us value of y.
Insufficient.

Answer : A
User avatar
sriharimurthy
Joined: 29 Oct 2009
Last visit: 23 Apr 2025
Posts: 126
Own Kudos:
3,002
 [3]
Given Kudos: 18
GMAT 1: 750 Q50 V42
GMAT 1: 750 Q50 V42
Posts: 126
Kudos: 3,002
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Quote:
2. If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1

Question Stem gives us :

(a) If x > 0 ; y = 2x
(b) If x < 0 ; y = 0

St. (1) : x < 0
Sufficient.

St. (2) : y < 1
Since y is an integer and y cannot be less than 0 (question stem part b) therefore y must be 0.
Sufficient.

Answer : D
User avatar
sriharimurthy
Joined: 29 Oct 2009
Last visit: 23 Apr 2025
Posts: 126
Own Kudos:
3,002
 [6]
Given Kudos: 18
GMAT 1: 750 Q50 V42
GMAT 1: 750 Q50 V42
Posts: 126
Kudos: 3,002
 [6]
1
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
Quote:
3. Is x^2 + y^2 > 4a?
(1) (x + y)^2 = 9a
(2) (x – y)^2 = a

St. (1) : (x + y)^2 = 9a
x^2 + y^2 + 2xy = 9a
Insufficient.

St. (2) : (x - y)^2 = a
x^2 + y^2 - 2xy = a
Insufficient.

St. (1) and (2) together : x^2 + y^2 = 5a
When either x or y is not 0, question stem holds true.
When x and y are both 0, question stem is false.

Hence insufficient.

Answer : E
User avatar
sriharimurthy
Joined: 29 Oct 2009
Last visit: 23 Apr 2025
Posts: 126
Own Kudos:
3,002
 [5]
Given Kudos: 18
GMAT 1: 750 Q50 V42
GMAT 1: 750 Q50 V42
Posts: 126
Kudos: 3,002
 [5]
1
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
Quote:
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

Question Stem : x > 0 ; y > 0 ?

St. (1) : 2x -2y = 1
x = y + 0.5
Equation can be satisfied for both positive and negative values of x and y.
Hence Insufficient.

St. (2) : x/y > 1
Equation can be satisfied when both x and y are either positive or negative.
Hence Insufficient.

St. (1) and (2) together : (y + 0.5)/y > 1
1 + 0.5/y > 1
0.5/y > 1
For this to be true, y must be positive.
If y is positive then x will also be positive.
Hence Sufficient.

Answer : C
User avatar
sriharimurthy
Joined: 29 Oct 2009
Last visit: 23 Apr 2025
Posts: 126
Own Kudos:
3,002
 [3]
Given Kudos: 18
GMAT 1: 750 Q50 V42
GMAT 1: 750 Q50 V42
Posts: 126
Kudos: 3,002
 [3]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Quote:
5. What is the value of y?
(1) 3|x^2 -4| = y - 2
(2) |3 - y| = 11

Question stem : What is the exact value of y?

St. (1) : 3*|x^2 -4| = y - 2
y = 3*|x^2 -4| + 2
From this we can infer that y will be a positive value. That is, y > 0. However, we want to know the exact value of y.
Therefore, Insufficient.

St. (2) : |3 - y| = 11
(a) When (3 - y) > 0 ; 3 - y = 11 ; y = -8.
(b) When (3 - y) < 0 ; - (3 - y) = 11 ; y = 14.
Thus we can see that there are two possible values for y.
Hence Insufficient.

St. (1) and (2) together : y > 0 ; y = 14 or -8.
Obviously since y has to be greater than 0, it cannot be -8. Therefore value of y = 14.
Hence Sufficient.

Answer : C
User avatar
sriharimurthy
Joined: 29 Oct 2009
Last visit: 23 Apr 2025
Posts: 126
Own Kudos:
3,002
 [2]
Given Kudos: 18
GMAT 1: 750 Q50 V42
GMAT 1: 750 Q50 V42
Posts: 126
Kudos: 3,002
 [2]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
6. If x and y are integer, is y > 0?
(1) x +1 > 0
(2) xy > 0

St. (1) : x + 1 > 0
Tells us nothing about y.
Insufficient.

St. (2) : xy > 0
Both x and y can either be positive or negative. Neither x nor y can be 0.
Insufficient.

St. (1) and (2) together :
Since x is an integer and cannot hold the value 0, it has to be greater than 1 in order to satisfy St. (1).
Since we know that x will be positive, y will also have to be a positive integer in order to satisfy St. (2).
Hence Sufficient.

Answer : C
   1   2   3   4   5   6   7   8   9   10   11   12   
Moderators:
Math Expert
102214 posts
424 posts