Last visit was: 22 Jun 2025, 10:30 It is currently 22 Jun 2025, 10:30
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 22 Jun 2025
Posts: 102,227
Own Kudos:
Given Kudos: 93,968
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,227
Kudos: 734,559
 [1226]
236
Kudos
Add Kudos
990
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 22 Jun 2025
Posts: 102,227
Own Kudos:
Given Kudos: 93,968
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,227
Kudos: 734,559
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
liarish
Joined: 26 Sep 2012
Last visit: 29 Apr 2013
Posts: 16
Own Kudos:
Given Kudos: 11
Posts: 16
Kudos: 6
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 22 Jun 2025
Posts: 102,227
Own Kudos:
Given Kudos: 93,968
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,227
Kudos: 734,559
Kudos
Add Kudos
Bookmarks
Bookmark this Post
liarish
Quote:
liarish wrote:
Hi Bunuel,
I have read all the responses to Q4. But I am still confused why C is the answer. Here is how I solved it.

4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

1) Insufficient . First reduced equation to x-y=0.5 . Plugged in 2 positive and 2 negative values. I chose x=3, y=2.5 => 3-2.5=0.5 works.. then chose x= -1, y=-1.5 => -1 - (-1.5)= 0.5. works again. So x and y can be both +ve and -ve. So 1) is Insufficient.
2) x/y>1. Just tells us that both x and y have same sign. both are -ve or both are +ve. So Insufficient.

Now Combining,
Picking the same values used in 1) x=3, y=2.5. both signs positive and x-y=0.5. works
then chose x= -1, y=-1.5 => -1 - (-1.5)= 0.5 both signes negative. works as well. So we still don't know if both signs are +ve or -ve. So my answer is E.

Could you please take a look at my solution and tell me where I am going wrong? That would be a big help. Thanks a ton!


If x= -1 and y=-1.5, then x/y=2/3<1, so these values don't satisfy the second statement.

This question is also discussed here: are-x-and-y-both-positive-1-2x-2y-1-2-x-y-93964.html

Hope it helps.

Great.. I get it now.. Thanks Bunuel.

I am also stuck at Q10 :

10. If n is not equal to 0, is |n| < 4 ?
(1) n^2 > 16
(2) 1/|n| > n

We need to see if |n|<4 (this means -4<n<4)

1) n^2>16 => n<-4 and n>4
So from n<-4, |n|<|-4| = |n|<4 (works)
But n>4 does not work.
Doesn't that make 1) Insufficient?

Could you please tell me what I am doing wrong here ??

If n<-4, then n, for example can be -4.5 --> |-4.5|=4.5>4, so |n|<4 doesn't hold true.

If n is not equal to 0, is |n| < 4 ?

Question basically asks whether \(-4<n<4\), so whether \(n\) is some number from this range.

(1) n^2>16. This implies that either \(n>4\) or \(n<-4\). No number from these ranges is between -4 and 4, thus the answer to the question whether \(-4<n<4\) is NO. Since we have a definite answer then this statement is sufficient.

Hope it's clear.
User avatar
carcass
User avatar
Board of Directors
Joined: 01 Sep 2010
Last visit: 22 Jun 2025
Posts: 4,703
Own Kudos:
Given Kudos: 4,807
Posts: 4,703
Kudos: 36,011
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel I have very clear the 1 statement but not so much the secon one : 1/|n|< n this is true only for negative value. So we could have i. e. : -1 or -6 so insuff but how we you arrive to this conclusion: :?: :?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 22 Jun 2025
Posts: 102,227
Own Kudos:
734,559
 [1]
Given Kudos: 93,968
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,227
Kudos: 734,559
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
carcass
Bunuel I have very clear the 1 statement but not so much the secon one : 1/|n|< n this is true only for negative value. So we could have i. e. : -1 or -6 so insuff but how we you arrive to this conclusion: :?: :?


Given: 1/|n| > n. Now, 1/|n| is always positive (because of the absolute value in the denominator), so if n is negative then this inequality will always hold true: 1/|n|=positive>n=negative.

Hope it's clear.

P.S. Complete solution for 1/|n| > n is n<0 or 0<n<1.
User avatar
carcass
User avatar
Board of Directors
Joined: 01 Sep 2010
Last visit: 22 Jun 2025
Posts: 4,703
Own Kudos:
Given Kudos: 4,807
Posts: 4,703
Kudos: 36,011
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Correct me if I'm wrong because the concepts are always the same but the gmat blonds them and as consequence blow your mind.

in other words, you are saying

1/|n| > n 2 cases

1/-n > n ----> n^2 > -1 this implies that any squared number is positive and therefore greater than -1, all negative n values work as solutions. your n < 0

1/n > n -----> 1 > n^2 ----> n^ 2 < 1 --------> -1 < n < 1 . your second range. so in the end we have all those information and we are not sure of course of - 4 < n < 4.

Correct ???

Thanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 22 Jun 2025
Posts: 102,227
Own Kudos:
734,559
 [1]
Given Kudos: 93,968
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,227
Kudos: 734,559
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
carcass
Correct me if I'm wrong because the concepts are always the same but the gmat blonds them and as consequence blow your mind.

in other words, you are saying

1/|n| > n 2 cases

1/-n > n ----> n^2 > -1 this implies that any squared number is positive and therefore greater than -1, all negative n values work as solutions. your n < 0

1/n > n -----> 1 > n^2 ----> n^ 2 < 1 --------> -1 < n < 1 . your second range. so in the end we have all this information and we are not sure of course of - 4 < n < 4.

Correct ???

Thanks

1/|n| > n --> 2 cases:

If n<0, then |n|=-n, so we'll have that 1/-n>n --> multiply by n and flip the sign (since we consider negative n): -1<n^2 --> which holds true for any n from this range, so for any negative n.

If n>0, then |n|=n, so we'll have that 1/n>n --> multiply by positive n, this time: 1>n^2 --> -1<n<1, since we consider n>0, then finally we'll get 0<n<1.

So, 1/|n| > n holds true for n<0 and 0<n<1.

Hope it's clear.
User avatar
WoundedTiger
Joined: 25 Apr 2012
Last visit: 25 Sep 2024
Posts: 523
Own Kudos:
Given Kudos: 740
Location: India
GPA: 3.21
WE:Business Development (Other)
Products:
Posts: 523
Kudos: 2,471
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
2. If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1

Note: as \(y=|x|+x\) then \(y\) is never negative. For \(x>{0}\) then \(y=x+x=2x\) and for \(x\leq{0}\) then (when x is negative or zero) then \(y=-x+x=0\).

(1) \(x<0\) --> \(y=|x|+x=-x+x=0\). Sufficient.

(2) \(y<1\), as we concluded y is never negative, and we are given that \(y\) is an integer, hence \(y=0\). Sufficient.

Answer: D.


Hi Bunuel,

Thanks for the explanation to the above Q.

Regarding st 1 i.e X less than zero then [m]y=|x|+x = -x+x=0,

1. we know any value in modulus is positive then ideally the above should be interpreted as [m]y=|x|+x--> [m]y=x-x=0.
2.Also if from St 1 if we x<0 then [m]y=|x|+x= -x-x=-2x

3. Where as we also know that |x|= -x for X<0 and |x|= x for X>/ 0

So can you please tell me where am I going wrong with the concept.

Thanks
Mridul
User avatar
WoundedTiger
Joined: 25 Apr 2012
Last visit: 25 Sep 2024
Posts: 523
Own Kudos:
Given Kudos: 740
Location: India
GPA: 3.21
WE:Business Development (Other)
Products:
Posts: 523
Kudos: 2,471
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
9. Is n<0?
(1) -n=|-n|
(2) n^2=16

(1) -n=|-n|, means that either n is negative OR n equals to zero. We are asked whether n is negative so we can not be sure. Not sufficient.

(2) n^2=16 --> n=4 or n=-4. Not sufficient.

(1)+(2) n is negative OR n equals to zero from (1), n is 4 or -4 from (2). --> n=-4, hence it's negative, sufficient.

Answer: C.


Hello Bunuel,

I got A as the answer to the Q.

From St1, we have -n=|-n|---> -n=n (As Mod value is +ve)---> we have 2n=0 or -2n=0. In both case we can say that n=0 and hence Ans should be A.

From your explanation, it is very clear that either n<0 or n=0. Could you tell me what was your approach to this Question. I mean did you assume values of
1. n as less than zero,
2. ngreater than zero and
3. n equal to zero

and check under which condition the St1 holds true.

If so, would this be a standard way of doing a modulus Question because clearly I just considered only 1 of the above conditions here.

Your inputs please

Thanks
Mridul
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 22 Jun 2025
Posts: 102,227
Own Kudos:
Given Kudos: 93,968
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,227
Kudos: 734,559
Kudos
Add Kudos
Bookmarks
Bookmark this Post
mridulparashar1
Bunuel
2. If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1

Note: as \(y=|x|+x\) then \(y\) is never negative. For \(x>{0}\) then \(y=x+x=2x\) and for \(x\leq{0}\) then (when x is negative or zero) then \(y=-x+x=0\).

(1) \(x<0\) --> \(y=|x|+x=-x+x=0\). Sufficient.

(2) \(y<1\), as we concluded y is never negative, and we are given that \(y\) is an integer, hence \(y=0\). Sufficient.

Answer: D.


Hi Bunuel,

Thanks for the explanation to the above Q.

Regarding st 1 i.e X less than zero then y=|x|+x = -x+x=0,

1. we know any value in modulus is positive then ideally the above should be interpreted as y=|x|+x--> y=x-x=0.
2.Also if from St 1 if we x<0 then y=|x|+x= -x-x=-2x

3. Where as we also know that |x|= -x for X<0 and |x|= x for X>/ 0


So can you please tell me where am I going wrong with the concept.

Thanks
Mridul

Absolute value properties:

When \(x\leq{0}\) then \(|x|=-x\), or more generally when \(some \ expression\leq{0}\) then \(|some \ expression|={-(some \ expression)}\). For example: \(|-5|=5=-(-5)\);

When \(x\geq{0}\) then \(|x|=x\), or more generally when \(some \ expression\geq{0}\) then \(|some \ expression|={some \ expression}\). For example: \(|5|=5\);

So, if \(x<0\), then \(|x|=-x\) and \(y=|x|+x=-x+x=0\).

For more check here: math-absolute-value-modulus-86462.html
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 22 Jun 2025
Posts: 102,227
Own Kudos:
Given Kudos: 93,968
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,227
Kudos: 734,559
Kudos
Add Kudos
Bookmarks
Bookmark this Post
mridulparashar1
Bunuel
9. Is n<0?
(1) -n=|-n|
(2) n^2=16

(1) -n=|-n|, means that either n is negative OR n equals to zero. We are asked whether n is negative so we can not be sure. Not sufficient.

(2) n^2=16 --> n=4 or n=-4. Not sufficient.

(1)+(2) n is negative OR n equals to zero from (1), n is 4 or -4 from (2). --> n=-4, hence it's negative, sufficient.

Answer: C.


Hello Bunuel,

I got A as the answer to the Q.

From St1, we have -n=|-n|---> -n=n (As Mod value is +ve)---> we have 2n=0 or -2n=0. In both case we can say that n=0 and hence Ans should be A.


First of all: \(|-n|=|n|\), so \(-n=|-n|\) is the same as \(-n=|n|\), which means that \(n\leq{0}\).
avatar
JJ2014
Joined: 06 Sep 2012
Last visit: 26 Aug 2013
Posts: 35
Own Kudos:
Given Kudos: 42
Concentration: Social Entrepreneurship
Posts: 35
Kudos: 199
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
5. What is the value of y?
(1) 3|x^2 -4| = y - 2
(2) |3 - y| = 11

(1) As we are asked to find the value of y, from this statement we can conclude only that y>=2, as LHS is absolute value which is never negative, hence RHS als can not be negative. Not sufficient.

(2) |3 - y| = 11:

y<3 --> 3-y=11 --> y=-8
y>=3 --> -3+y=11 --> y=14

Two values for y. Not sufficient.

(1)+(2) y>=2, hence y=14. Sufficient.

Answer: C.

Bunuel, I think I need some conceptual help. Why should we not solve statement 1 by rewriting the two statements and then adding them together? (Besides the fact that it's time consuming....) I rewrote them and found 3x^2 -10 = y for the positive absolute vlaue, and -3x^2+14=y for the negative abs value. From this, I added them together and got y=4..

Can you please explain what I'm getting wrong conceptually? Thanks so much!!!! I appreciate your kindness.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 22 Jun 2025
Posts: 102,227
Own Kudos:
734,559
 [1]
Given Kudos: 93,968
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,227
Kudos: 734,559
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
JJ2014
Bunuel
5. What is the value of y?
(1) 3|x^2 -4| = y - 2
(2) |3 - y| = 11

(1) As we are asked to find the value of y, from this statement we can conclude only that y>=2, as LHS is absolute value which is never negative, hence RHS als can not be negative. Not sufficient.

(2) |3 - y| = 11:

y<3 --> 3-y=11 --> y=-8
y>=3 --> -3+y=11 --> y=14

Two values for y. Not sufficient.

(1)+(2) y>=2, hence y=14. Sufficient.

Answer: C.

Bunuel, I think I need some conceptual help. Why should we not solve statement 1 by rewriting the two statements and then adding them together? (Besides the fact that it's time consuming....) I rewrote them and found 3x^2 -10 = y for the positive absolute vlaue, and -3x^2+14=y for the negative abs value. From this, I added them together and got y=4..

Can you please explain what I'm getting wrong conceptually? Thanks so much!!!! I appreciate your kindness.

|x^2-4|=x^2-4 when x^2-4>0;
|x^2-4|=-(x^2-4) when x^2-4<=0.

So, the two equations you'll get from the original are relevant for different ranges of x. Hence, you cannot consider them as two separate equations and solve.

To put it simply: we cannot get the single value of y from 3|x^2 -4| = y - 2. Consider y=2 and x=2 OR y=11 and x=1.

Hope it's clear.
User avatar
Transcendentalist
Joined: 24 Nov 2012
Last visit: 04 Dec 2023
Posts: 131
Own Kudos:
Given Kudos: 73
Concentration: Sustainability, Entrepreneurship
GMAT 1: 770 Q50 V44
WE:Business Development (Internet and New Media)
GMAT 1: 770 Q50 V44
Posts: 131
Kudos: 1,048
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
3. Is x^2 + y^2 > 4a?
(1) (x + y)^2 = 9a
(2) (x – y)^2 = a

(1) (x + y)^2 = 9a --> x^2+2xy+y^2=9a. Clearly insufficient.

(2) (x – y)^2 = a --> x^2-2xy+y^2=a. Clearly insufficient.

(1)+(2) Add them up 2(x^2+y^2)=10a --> x^2+y^2=5a. Also insufficient as x,y, and a could be 0 and x^2 + y^2 > 4a won't be true, as LHS and RHS would be in that case equal to zero. Not sufficient.

Answer: E.

hi Bunuel,

Thank you very much for all the explanations. I have a query on this one

Combining both we get x^2+y^2=5a or x,y,a = 0

aren't those sufficient to answer the question is x^2+y^2>4a

Is the first case where x^2+y^2=5a, the answer is yes

Second case where x,y,a=0, the answer is no

Kindly do elaborate. Thanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 22 Jun 2025
Posts: 102,227
Own Kudos:
734,559
 [1]
Given Kudos: 93,968
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,227
Kudos: 734,559
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Transcendentalist
Bunuel
3. Is x^2 + y^2 > 4a?
(1) (x + y)^2 = 9a
(2) (x – y)^2 = a

(1) (x + y)^2 = 9a --> x^2+2xy+y^2=9a. Clearly insufficient.

(2) (x – y)^2 = a --> x^2-2xy+y^2=a. Clearly insufficient.

(1)+(2) Add them up 2(x^2+y^2)=10a --> x^2+y^2=5a. Also insufficient as x,y, and a could be 0 and x^2 + y^2 > 4a won't be true, as LHS and RHS would be in that case equal to zero. Not sufficient.

Answer: E.

hi Bunuel,

Thank you very much for all the explanations. I have a query on this one

Combining both we get x^2+y^2=5a or x,y,a = 0

aren't those sufficient to answer the question is x^2+y^2>4a

Is the first case where x^2+y^2=5a, the answer is yes

Second case where x,y,a=0, the answer is no

Kindly do elaborate. Thanks

First of all when we combine we get that x^2+y^2=5a. If \(xya\neq{0}\), then the answer is YES but if \(xya={0}\), then the answer is NO.

Next, it's a YES/NO DS question. In a Yes/No Data Sufficiency question, statement(s) is sufficient if the answer is “always yes” or “always no” while a statement(s) is insufficient if the answer is "sometimes yes" and "sometimes no".

Hope it's clear.
User avatar
StormedBrain
Joined: 10 Aug 2013
Last visit: 17 Mar 2014
Posts: 13
Own Kudos:
26
 [2]
Given Kudos: 17
Posts: 13
Kudos: 26
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Bunuel
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

(1) 2x-2y=1. Well this one is clearly insufficient. You can do it with number plugging OR consider the following: x and y both positive means that point (x,y) is in the I quadrant. 2x-2y=1 --> y=x-1/2, we know it's an equation of a line and basically question asks whether this line (all (x,y) points of this line) is only in I quadrant. It's just not possible. Not sufficient.

(2) x/y>1 --> x and y have the same sign. But we don't know whether they are both positive or both negative. Not sufficient.

(1)+(2) Again it can be done with different approaches. You should just find the one which is the less time-consuming and comfortable for you personally.

One of the approaches:
\(2x-2y=1\) --> \(x=y+\frac{1}{2}\)
\(\frac{x}{y}>1\) --> \(\frac{x-y}{y}>0\) --> substitute x --> \(\frac{1}{y}>0\) --> \(y\) is positive, and as \(x=y+\frac{1}{2}\), \(x\) is positive too. Sufficient.

Answer: C.


Bunuel , Can you please show how we can reach to C using graphical approach ?
User avatar
StormedBrain
Joined: 10 Aug 2013
Last visit: 17 Mar 2014
Posts: 13
Own Kudos:
Given Kudos: 17
Posts: 13
Kudos: 26
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
10. If n is not equal to 0, is |n| < 4 ?
(1) n^2 > 16
(2) 1/|n| > n

Question basically asks is -4<n<4 true.

(1) n^2>16 --> n>4 or n<-4, the answer to the question is NO. Sufficient.

(2) 1/|n| > n, this is true for all negative values of n, hence we can not answer the question. Not sufficient.

Answer: A.


Hi Bunuel ,

I know saying (1/|n|) < n will be true for all n<0 is quite clear logically. Still I want to reach this conclusion mathematically.

I got swayed solving for n|n| < 1 .
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 22 Jun 2025
Posts: 102,227
Own Kudos:
734,559
 [6]
Given Kudos: 93,968
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,227
Kudos: 734,559
 [6]
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
StormedBrain
Bunuel
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

(1) 2x-2y=1. Well this one is clearly insufficient. You can do it with number plugging OR consider the following: x and y both positive means that point (x,y) is in the I quadrant. 2x-2y=1 --> y=x-1/2, we know it's an equation of a line and basically question asks whether this line (all (x,y) points of this line) is only in I quadrant. It's just not possible. Not sufficient.

(2) x/y>1 --> x and y have the same sign. But we don't know whether they are both positive or both negative.Not sufficient.

(1)+(2) Again it can be done with different approaches. You should just find the one which is the less time-consuming and comfortable for you personally.

One of the approaches:
\(2x-2y=1\) --> \(x=y+\frac{1}{2}\)
\(\frac{x}{y}>1\) --> \(\frac{x-y}{y}>0\) --> substitute x --> \(\frac{1}{y}>0\) --> \(y\) is positive, and as \(x=y+\frac{1}{2}\), \(x\) is positive too. Sufficient.

Answer: C.


Bunuel , Can you please show how we can reach to C using graphical approach ?

4. Are x and y both positive?

The question asks whether point (x, y) is in the first quadrant.

(1) 2x-2y=1 --> draw line y=x-1/2:
Attachment:
graph.png
graph.png [ 6.13 KiB | Viewed 6848 times ]
Not sufficient.


(2) x/y>1 --> Draf line x/y=1. The solutions is the green region:
Attachment:
graph (2).png
graph (2).png [ 5.95 KiB | Viewed 6807 times ]
Not sufficient.

(1)+(2) Intersection is the portion of the blue line which lies in the first quadrant. Sufficient.

Answer: C.

Hope it helps.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 22 Jun 2025
Posts: 102,227
Own Kudos:
734,559
 [1]
Given Kudos: 93,968
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,227
Kudos: 734,559
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
StormedBrain
Bunuel
10. If n is not equal to 0, is |n| < 4 ?
(1) n^2 > 16
(2) 1/|n| > n

Question basically asks is -4<n<4 true.

(1) n^2>16 --> n>4 or n<-4, the answer to the question is NO. Sufficient.

(2) 1/|n| > n, this is true for all negative values of n, hence we can not answer the question. Not sufficient.

Answer: A.


Hi Bunuel ,

I know saying (1/|n|) < n will be true for all n<0 is quite clear logically. Still I want to reach this conclusion mathematically.

I got swayed solving for n|n| < 1 .

n*|n| < 1.

If n<0, then we'll have -n^2<1 --> n^2>-1. Which is true. So, n*|n| < 1 holds true for any negative value of n.
If n>0, then we'll have n^2<1 --> -1<n<1. So, n*|n| < 1 also holds true for 0<n<1.

Thus 1/|n| > n holds true if n<0 and 0<n<1.

Does this make sense?
avatar
madn800
Joined: 07 May 2013
Last visit: 11 Aug 2014
Posts: 67
Own Kudos:
Given Kudos: 1
Posts: 67
Kudos: 65
Kudos
Add Kudos
Bookmarks
Bookmark this Post
3. Is x^2 + y^2 > 4a?
(1) (x + y)^2 = 9a
(2) (x – y)^2 = a

(1) (x + y)^2 = 9a --> x^2+2xy+y^2=9a. Clearly insufficient.

(2) (x – y)^2 = a --> x^2-2xy+y^2=a. Clearly insufficient.

(1)+(2) Add them up 2(x^2+y^2)=10a --> x^2+y^2=5a. Also insufficient as x,y, and a could be 0 and x^2 + y^2 > 4a won't be true, as LHS and RHS would be in that case equal to zero. Not sufficient.

Answer: E.

Also insufficient as x,y, and a could be 0
Why did you assume that ALL COULD be zero.
   1   2   3   4   5   6   7   8   9   10   11   12   
Moderators:
Math Expert
102227 posts
425 posts