GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 23 Oct 2019, 21:27

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Retired Moderator
avatar
B
Joined: 27 Aug 2012
Posts: 1050
Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post Updated on: 19 Jun 2019, 07:14
8
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

58% (02:19) correct 42% (02:18) wrong based on 165 sessions

HideShow timer Statistics


Originally posted by bagdbmba on 05 Aug 2013, 23:28.
Last edited by Bunuel on 19 Jun 2019, 07:14, edited 3 times in total.
Renamed the topic and edited the question.
Verbal Forum Moderator
User avatar
B
Joined: 10 Oct 2012
Posts: 590
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 05 Aug 2013, 23:37
1
1
bagdbmba wrote:
Is a<0?

(1) \(a^3<a^2+2a\)
(2) \(a^2>a^3\)


From F.S 1, add 1 on both sides : \(a^2+2a+1>a^3+1 \to (a+1)^2-(a+1)(a^2+1-a)>0 \to (a+1)[(a+1)-(a^2+1-a)]>0 \to (a+1)(2a-a^2)>0\)
Thus, we get a(a+1)(a-2)<0. Either 0<a<2 OR a<-1. Insufficient.

From F.S 2, we can divide by\(a^2\) on both sides and we get a<1. Insufficient.

Taking both together, we know that a<1. Thus, a could be 0<a<1 OR a<-1. Insufficient.

E.
_________________
Director
Director
User avatar
Joined: 14 Dec 2012
Posts: 702
Location: India
Concentration: General Management, Operations
GMAT 1: 700 Q50 V34
GPA: 3.6
GMAT ToolKit User
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 05 Aug 2013, 23:42
bagdbmba wrote:
Is a<0?

(1) \(a^3<a^2+2a\)
(2) \(a^2>a^3\)


STMNT 1:

\(a^3<a^2+2a\)
\(a^3-a^2-2a < 0\)
a(a+1)(a-2)<0
when a = -2 expression above is= -8 which is < 0
when a = 1 expression above is = -2 which is <0
hence a can be -ve /+ve insufficient

STMNT 2:
\(a^2\)\(> a^3\)
\(a^2(a-1)<0\)
clearly this satisfies for a<1
hence a can be -ve /+ve insufficient

combining both
still both statement satisfies for a = 0.5 and a =-2
hence insufficient

hence E
_________________
When you want to succeed as bad as you want to breathe ...then you will be successfull....

GIVE VALUE TO OFFICIAL QUESTIONS...



GMAT RCs VOCABULARY LIST: http://gmatclub.com/forum/vocabulary-list-for-gmat-reading-comprehension-155228.html
learn AWA writing techniques while watching video : http://www.gmatprepnow.com/module/gmat-analytical-writing-assessment
: http://www.youtube.com/watch?v=APt9ITygGss
Senior Manager
Senior Manager
avatar
Joined: 10 Jul 2013
Posts: 289
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 05 Aug 2013, 23:50
bagdbmba wrote:
Is a<0?

(1) \(a^3<a^2+2a\)
(2) \(a^2>a^3\)


st(1) , add 1 to both sides. then a= -1 and a= 1/2. you will have a double case.
st(2), a can be any positive fraction here and a can be any negative integer too such as a= 1/2 and a = -2 . a double case too.
so both statement depict the same answers, which are both a double case.
so Answer is (E)
_________________
Asif vai.....
Verbal Forum Moderator
User avatar
B
Joined: 10 Oct 2012
Posts: 590
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 08 Aug 2013, 01:45
1
kumar23badgujar wrote:
Consider,

Statement (1): \(a^3 < a^2 + 2a\)

\(a^3 - a^2 - 2a < 0\)
\(a(a^2 - a - 2) < 0\)
\(a(a -2)(a + 1) < 0\)

i.e. a = 0 or a = 2 or a = -1, hence not sufficient.

Statement (2): \(a^2 > a^3\)
This simply means,
a < 1, hence not sufficient.

Combining both statements, we get a = 0 or a = -1, Hence both statements together not sufficient.

Correct Ans: E


Even though you have the correct answer, I am sorry but it is not what it means(the highlighted part). It is not an equality, rather an in-equality.Please refer through the above posts, for the correct method.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58465
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 21 Sep 2013, 04:33
1
1
pjagadish27 wrote:
Statement 1 -> a^3-a^2-2a<0.
a(a-2)(a+1)<0=>a<0 or a<2 or a<-1. Not Sufficient.

Statement 2->a^2-a^3>0=>a^2(1-a)>0 => a>0 or a<1.Not Sufficient.

1&2,still a<2 exists which does not answer the question is a<0. So E.


The answer is E, but the ranges are not correct.

Is a < 0 ?

(1) a^3 < a^2 + 2a --> \((a+1)a(a-2)<0\) --> \(a<-1\) or \(0<a<2\). Not sufficient.

(2) a^2 > a^3 --> \(a^2(1-a)>0\) --> \(a<0\) or \(0<a<1\). Not sufficient.

(1)+(2) Intersection of the ranges from (1) and (2) is \(a<-1\) or \(0<a<1\). Not sufficient.

Answer: E.


_________________
Manager
Manager
User avatar
Joined: 03 Dec 2012
Posts: 189
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 09 Oct 2013, 01:49
Bunuel why can't we factorize a^2>a^3 as 1>a or a<1.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58465
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 09 Oct 2013, 02:00
1
Intern
Intern
avatar
Joined: 24 Oct 2013
Posts: 5
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 18 Jan 2014, 10:58
Bunuel wrote:
mohnish104 wrote:
Bunuel why can't we factorize a^2>a^3 as 1>a or a<1.


a<1 implies that a can be 0. But a=0 does not satisfy a^2>a^3, so the correct ranges for which this inequality holds true is a<0 or 0<a<1 (the same range as you have excluding 0).

Hope it helps.


Hi,

There's a concept related to inequalities that I fail to understand. Could you please tell me what I'm doing wrong?

For statement 2 we have "a^2 > a^3". Depending on how I solve this, I'm getting two complete different ranges, both of which are incorrect.

First case:

a^2 - a^3 > 0
a^2*(1-a)>0------> this gives me the critical points 0 and 1.

Hence I have 3 ranges: (1st) a<0, (2nd) 0<a<1, and (3rd) a>1.

As the inequality has the ">0" sign I took only the 1st and 3rd range and got "a<0 or a>1".

Second case:

0>a^3 - a^2
0>a^2*(a-1)------> this also gives me the critical points 0 and 1.

Hence I have the same 3 ranges: (1st) a<0, (2nd) 0<a<1, and (3rd) a>1.

However, this time we have "0>" sign, so I took only the second range: 0<a<1.

In any case, both are false. What's odd is that I used the same method to find the range for statement 1 but I got the correct answer.

Thanks a lot for your help.

Aurèle
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58465
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 19 Jan 2014, 10:34
Aurele wrote:
Bunuel wrote:
mohnish104 wrote:
Bunuel why can't we factorize a^2>a^3 as 1>a or a<1.


a<1 implies that a can be 0. But a=0 does not satisfy a^2>a^3, so the correct ranges for which this inequality holds true is a<0 or 0<a<1 (the same range as you have excluding 0).

Hope it helps.


Hi,

There's a concept related to inequalities that I fail to understand. Could you please tell me what I'm doing wrong?

For statement 2 we have "a^2 > a^3". Depending on how I solve this, I'm getting two complete different ranges, both of which are incorrect.

First case:

a^2 - a^3 > 0
a^2*(1-a)>0------> this gives me the critical points 0 and 1.

Hence I have 3 ranges: (1st) a<0, (2nd) 0<a<1, and (3rd) a>1.

As the inequality has the ">0" sign I took only the 1st and 3rd range and got "a<0 or a>1".

Second case:

0>a^3 - a^2
0>a^2*(a-1)------> this also gives me the critical points 0 and 1.

Hence I have the same 3 ranges: (1st) a<0, (2nd) 0<a<1, and (3rd) a>1.

However, this time we have "0>" sign, so I took only the second range: 0<a<1.

In any case, both are false. What's odd is that I used the same method to find the range for statement 1 but I got the correct answer.

Thanks a lot for your help.

Aurèle


0 is not a critical point. The squared terms (basically even powers) must be ignored because they cannot be negative and hence doesn't affect the sign.
_________________
Intern
Intern
avatar
Joined: 24 Oct 2013
Posts: 5
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 21 Jan 2014, 07:42
Bunuel wrote:

0 is not a critical point. The squared terms (basically even powers) must be ignored because they cannot be negative and hence doesn't affect the sign.


Great, thanks for the reply. Just to be sure that I understand the concept fully, could you tell me please if I'm solving the following equation correctly (from Manhattan books):

\(x^6 - x^7 > x^5 - x^6\)

I factor the equation and get:

\(x^5*(x-1)^2 < 0\)

Here, If I understand your explanation well, \(x^5\) is raised to an odd power; hence, it should be considered, as it can yield a negative or positive result. Conversely, \((x-1)^2\) is raised to an even power; thus, we ignore it.

The critical point is then : \(0\)

Because we have the \(<0\) sign, we'd get \(x<0\). Would this be correct?
Manager
Manager
User avatar
Joined: 14 Oct 2014
Posts: 66
Location: United States
GMAT 1: 500 Q36 V23
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 29 Jan 2015, 22:49
Is a<0?
(1) Insufficient. If a=-5, then -125 < 25-10 --->Yes
If a=1/2, then 1/8 < 1/4+1 --->No

(2) Insufficient. If a=-5, then 25>-125 --->Yes
If a=1/2, then 1/4>1/8 --->No
(1)+(2) Insufficient. We can use the same numbers and we get two different answers
Intern
Intern
avatar
Joined: 31 May 2015
Posts: 1
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 02 Jun 2015, 11:37
Hello! I was looking through these posts, answering questions, and I came across this one:

Is a<0?

(1) a3<a2+2a
(2) a2>a3


from: forum/is-a-157421.html

In the topic above, the answer is that both statements together are insufficient to answer the problem but surely the only case in which \(a^{2}\) is greater than\(a^{3}\) is if a is negative?
My answer is that both statements alone can answer the question, as the only way \(a^{3}\) is smaller than what it is compared to is if a is negative. What am I overlooking?

Thank you.
e-GMAT Representative
User avatar
V
Joined: 04 Jan 2015
Posts: 3092
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 02 Jun 2015, 22:02
1
cmcmcm wrote:
Hello! I was looking through these posts, answering questions, and I came across this one:

Is a<0?

(1) a3<a2+2a
(2) a2>a3


from: forum/is-a-157421.html

In the topic above, the answer is that both statements together are insufficient to answer the problem but surely the only case in which \(a^{2}\) is greater than\(a^{3}\) is if a is negative?
My answer is that both statements alone can answer the question, as the only way \(a^{3}\) is smaller than what it is compared to is if a is negative. What am I overlooking?

Thank you.


Hi cmcmcm,

Always be very careful on how you are finding out the range of an inequality. Let me help you out with finding the range of a for both the inequalities.

Statement-I
\(a^3<a^2+2a\) can be simplified to \(a(a + 1)(a - 2) < 0\). Using the wavy line method to find the range of \(a\) with the zero points being 2, 0 and -1.

Image

We can see from the wavy line diagram that the inequality is negative in the range where \(a < -1\) or \(0 < a < 2\). Hence, you can't say for sure if \(a < 0\) using statement-I alone

Statement-II
\(a^2>a^3\) can be simplified to \(a^2(a - 1) < 0\). Since \(a^2\) is always non-negative, for \(a^2(a - 1) < 0\), \((a - 1) < 0\) i.e. \(a < 1\).
So \(a < 0\) or \(a > 0\). Hence using statement-II alone you cant' say for sure if \(a < 0\).

Combining statement-I & II
Combining statements-I & II will give us the range as \(a < -1\) or \(0 <a <1\). Hence, it is not sufficient to tell if \(a < 0\). Therefore the answer is E.

You can read more about the Wavy line method here.

Hope it's clear :).Let me know if you have any doubt in any part of the explanation.

Regards
Harsh
_________________
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 15321
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 03 Jun 2015, 15:26
1
Hi cmcmcm,

The prompt does NOT state that "A" has to be an integer, so you have to consider the possibility that it's NOT an integer (meaning "A" could be a fraction).

While that level of 'thoroughness' isn't going to be required on that many DS questions, Test Takers who score at the higher levels in the Quant section are more likely to see questions in which fractional answers have to be considered.

GMAT assassins aren't born, they're made,
Rich
_________________
Contact Rich at: Rich.C@empowergmat.com
Image


The Course Used By GMAT Club Moderators To Earn 750+

souvik101990 Score: 760 Q50 V42 ★★★★★
ENGRTOMBA2018 Score: 750 Q49 V44 ★★★★★
Manager
Manager
avatar
Joined: 21 May 2015
Posts: 215
Concentration: Operations, Strategy
GMAT 1: 750 Q50 V41
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 04 Jun 2015, 00:44
E
(1) take a = -1, -2 ---- If a=-1 then eqn gives -1<-1 which is not true and if a=-2 then eqn gives -8<0 which is true ....thats y insuff
(2) a^2>a^3 implies a can be -ve or 0<a<1 thus insuff....
Combined also is insuff because of above reasons
_________________
Apoorv

I realize that i cannot change the world....But i can play a part :)
Manager
Manager
avatar
Joined: 21 May 2015
Posts: 215
Concentration: Operations, Strategy
GMAT 1: 750 Q50 V41
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 04 Jun 2015, 01:12
(1) a^3 < a^2 + 2a - --- a=-1 then -1<-1 not true ; a=-2 then -8<0 true insuff
(2) a^2 > a^3 then a<0 or 0<a<1 insuff

If we combine both we cannot answer bc of above reasons
_________________
Apoorv

I realize that i cannot change the world....But i can play a part :)
GMAT Club Legend
GMAT Club Legend
User avatar
V
Joined: 12 Sep 2015
Posts: 4019
Location: Canada
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post Updated on: 23 Feb 2017, 23:15
2
Top Contributor
anairamitch1804 wrote:
Is a < 0 ?
(1) a³ < a² + 2a
(2) a² > a³


Target question: Is a < 0 ?

Statement 1: a³ < a² + 2a
Subtract a² and 2a from both sides to get: a³ - a² - 2a < 0
Factor: a(a² - a - 2) < 0
Factor more: a(a - 2)(a + 1) < 0
There are several values of a that satisfy this inequality. Here are two:
Case a: a = 0.5. In this case, a > 0
Case b: a = -10. In this case, a < 0
Since we cannot answer the target question with certainty, statement 1 is NOT SUFFICIENT

Statement 2: a² > a³
There are several values of a that satisfy this inequality. Here are two:
Case a: a = 0.5. In this case, a > 0
Case b: a = -10. In this case, a < 0
Since we cannot answer the target question with certainty, statement 2 is NOT SUFFICIENT

Statements 1 and 2 combined
There are several values of a that satisfy BOTH statements Here are two:
Case a: a = 0.5. In this case, a > 0
Case b: a = -10. In this case, a < 0
Since we cannot answer the target question with certainty, the combined statements are NOT SUFFICIENT

Answer: E

Cheers,
Brent
_________________
Test confidently with gmatprepnow.com
Image

Originally posted by GMATPrepNow on 23 Feb 2017, 19:40.
Last edited by GMATPrepNow on 23 Feb 2017, 23:15, edited 1 time in total.
Math Expert
avatar
V
Joined: 02 Aug 2009
Posts: 8025
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 23 Feb 2017, 19:48
1
Is a < 0 ?
(1) a^3 < a^2 + 2a
\(a^3-a^2-2a<0......a( a^2-a-2)<0......a(a-2)(a+1)<0\)
So a <-1 will give ans as YES..
a=0 or 1 will also be true and ans will be NO
Insufficient

(2) a^2 > a^3
a^2-a^3>0......\(a^2(1-a)>0\)..
So 1-a>0..a<1...
So a can be -1 or 0 or 0.5
Insuff..

Combined
Again a as 0, 0.5 or -3 etc still remains..
Insufficient

E
_________________
Intern
Intern
avatar
B
Joined: 11 Feb 2017
Posts: 2
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3  [#permalink]

Show Tags

New post 23 Feb 2017, 20:57
Is a < 0?

Statement 1: a^3 < a^2 +2a --> a(a+1)(a-2) < 0 Therefore, if this equals zero, then a can be -1, 0, or 2.
Try a = 1, the expression is negative. We can fill in the number line with signs because signs will switch back and forth.
Therefore <----(-1)++++(0)-----(2)+++++>. Statement 1 is correct when a is less than -1 or between 0 and 2. Insufficient.

Statement 2: a^2 > a^3 --> a(a)(a-1) > 0 Therefore, if this equals zero, then a can be 0 or 1.
Try a = 2, the expression is positive. We can fill in the number line with signs because signs will switch back and forth.
Therefore <++++(0)------(1)+++++>. Statement 2 is correct when a is less than 0 or greater than 1. Insufficient.

Combined:
From statement 1, a can be less than -1 or between 0 and 2.
From statement 2, a can be less than 0 or greater than 1.
Therefore, a must be less than -1 or between 1 and 2.
Is a < 0? Yes and no. Insufficient.
GMAT Club Bot
Re: Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3   [#permalink] 23 Feb 2017, 20:57

Go to page    1   2    Next  [ 22 posts ] 

Display posts from previous: Sort by

Is a < 0 ? (1) a^3 < a^2 + 2a (2) a^2 > a^3

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne