Last visit was: 19 Nov 2025, 03:55 It is currently 19 Nov 2025, 03:55
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
555-605 Level|   Inequalities|                  
User avatar
sacmanitin
Joined: 05 Jun 2009
Last visit: 29 Feb 2016
Posts: 51
Own Kudos:
2,296
 [118]
Given Kudos: 4
Posts: 51
Kudos: 2,296
 [118]
12
Kudos
Add Kudos
106
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [48]
7
Kudos
Add Kudos
41
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [16]
10
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
General Discussion
User avatar
Economist
Joined: 01 Apr 2008
Last visit: 24 Dec 2018
Posts: 383
Own Kudos:
4,450
 [11]
Given Kudos: 18
Name: Ronak Amin
Schools: IIM Lucknow (IPMX) - Class of 2014
Schools: IIM Lucknow (IPMX) - Class of 2014
Posts: 383
Kudos: 4,450
 [11]
7
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
IMO B.

stmt1: if both x and y are negative such that the product of their absolute values is > 6 then xy>6. eg. x=-8, y=-3

stmt2: x is +ve, -8<y<8.
Let us take max value of x =2/3 and max value of y=8, the product is <6.
Now, let us take max value of x=2/3 and a negative value of y=-8, the product is -ve and hence < 6.
One more try, take x=2/3 and y=5, the product is <6.
User avatar
beyondgmatscore
Joined: 14 Feb 2011
Last visit: 10 Nov 2015
Posts: 102
Own Kudos:
433
 [1]
Given Kudos: 3
Posts: 102
Kudos: 433
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Clearly 1) is sufficient. It says x is less than 3 and y is less than 2 so product can not be greater than 6.

Lets examine 2) x lies between 1/2 and 2/3 and y^2 is less than 64, or y lies within (-8,8). On the extreme, xy can be just below 2/3*8 or ~5.33 so it will always be less than 6. Sufficient.

Answer should be D.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
778,194
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
beyondgmatscore
Clearly 1) is sufficient. It says x is less than 3 and y is less than 2 so product can not be greater than 6.

Lets examine 2) x lies between 1/2 and 2/3 and y^2 is less than 64, or y lies within (-8,8). On the extreme, xy can be just below 2/3*8 or ~5.33 so it will always be less than 6. Sufficient.

Answer should be D.

Statement (1) is not sufficient: if x and y are small enough negative numbers, for example -10 and -10 then xy=100>6. So answer is B, not D.
User avatar
naveenhv
Joined: 14 Dec 2010
Last visit: 05 Oct 2018
Posts: 92
Own Kudos:
Given Kudos: 5
Location: India
Concentration: Technology, Entrepreneurship
GMAT 1: 680 Q44 V39
Kudos
Add Kudos
Bookmarks
Bookmark this Post
How does y^2 <64 become y<8 and y>-8?
User avatar
fluke
User avatar
Retired Moderator
Joined: 20 Dec 2010
Last visit: 24 Oct 2013
Posts: 1,099
Own Kudos:
5,095
 [2]
Given Kudos: 376
Posts: 1,099
Kudos: 5,095
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
naveenhv
How does y^2 <64 become y<8 and y>-8?
1/2 < x < 2/3 and y^2<64

It is a general rule;

\(y^2 < 64\)
\(|y| < 8\) (Watch the less than (<) symbol)
Means;
-8<y<8

\(y^2 > 64\)
\(|y| > 8\)(Watch the greater than (>) symbol)
Means;
y>8 or y<-8

so;
-8<y<8
1/2<x<2/3

Extreme values of xy
-8*1/2 = -4
8*1/2 = 4
-8*2/3 = -16/3 > -6
8*2/3 = 16/3 < 6

Thus;
xy>-6
xy<6

We found that; yes indeed xy<6.
Sufficient.
User avatar
mymbadreamz
Joined: 15 Apr 2011
Last visit: 10 Mar 2022
Posts: 56
Own Kudos:
Given Kudos: 45
Products:
Posts: 56
Kudos: 119
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel, your explanations are so easy to understand. Thanks!
User avatar
madzstar
Joined: 24 Apr 2013
Last visit: 13 May 2014
Posts: 34
Own Kudos:
Given Kudos: 76
Schools: Duke '16
Schools: Duke '16
Posts: 34
Kudos: 23
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
mymbadreamz
I didn't understand this one. could someone please explain why C is not the answer? thanks.

Is \(xy<6\)?

(1) \(x<3\) and \(y<2\) --> now, if both \(x\) and \(y\) are equal to zero then \(xy=0<6\) and the answer will be YES but if both \(x\) and \(y\) are small enough negative numbers, for example -10 and -10 then \(xy=100>6\) and the answer will be NO. Not sufficient.

(2) \(\frac{1}{2}<x<\frac{2}{3}\) and \(y^2<64\), which is equivalent to \(-8<y<8\) --> even if we take the boundary values of \(x\) and \(y\) to maixmize their product we'll get: \(xy=\frac{2}{3}*8\approx{5.3}<6\), so the answer to the question "is \(xy<6\)?" will always be YES. Sufficient.

Answer: B.

i dont understand i put A....i could answer the question with that information. N why are we letting x times y = to 0 why cant we let it be equal to 1 or 2?

if a number times a number is less than 6......cant we just say use 1?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,379
Own Kudos:
778,194
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,379
Kudos: 778,194
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
madzstar
Bunuel
mymbadreamz
I didn't understand this one. could someone please explain why C is not the answer? thanks.

Is \(xy<6\)?

(1) \(x<3\) and \(y<2\) --> now, if both \(x\) and \(y\) are equal to zero then \(xy=0<6\) and the answer will be YES but if both \(x\) and \(y\) are small enough negative numbers, for example -10 and -10 then \(xy=100>6\) and the answer will be NO. Not sufficient.

(2) \(\frac{1}{2}<x<\frac{2}{3}\) and \(y^2<64\), which is equivalent to \(-8<y<8\) --> even if we take the boundary values of \(x\) and \(y\) to maixmize their product we'll get: \(xy=\frac{2}{3}*8\approx{5.3}<6\), so the answer to the question "is \(xy<6\)?" will always be YES. Sufficient.

Answer: B.

i dont understand i put A....i could answer the question with that information. N why are we letting x times y = to 0 why cant we let it be equal to 1 or 2?

if a number times a number is less than 6......cant we just say use 1?

On DS questions when plugging numbers, goal is to prove that the statement is not sufficient. So we should try to get a YES answer with one chosen number(s) and a NO with another.

Now, for x=y=0 we got an YES answer and for x=y=-10 we got a NO answer, thus the statement is NOT sufficient.

Of course we could use some other numbers to get an YES and a NO answers to prove that the statement is not sufficient: x=y=0 and x=y=-10 are just examples of many possible sets.

Hope it's clear.
User avatar
code19
Joined: 23 Jun 2008
Last visit: 05 Feb 2014
Posts: 69
Own Kudos:
68
 [4]
Given Kudos: 24
Location: Australia
Schools: AGSM '21
GMAT Date: 04-01-2014
Schools: AGSM '21
Posts: 69
Kudos: 68
 [4]
4
Kudos
Add Kudos
Bookmarks
Bookmark this Post

Statement (1)


We are given x < 3 and y < 2 ; no lower bound specified for either of the variables.
x and y could be x=-3 and y=-2 we get xy=6 or they could be very small negative numbers then xy would be much greater than 6.
On the other hand x=1 y=1 which results in xy=1 which is smaller than 6 so Statement (1) is not sufficient


Statement (2)



y^2 < 64 can be rewritten as -8< y <8 ,
Since x is positive, we can test the extremes without worrying about changing the direction of the inequality sign
-8*(2/3) < xy < 8*(2/3)

-5.3333 < xy < 5.333
So we can answer the question "Is xy<6" with the Statement (2) ALONE.

Answer B;
User avatar
JeffTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 04 Mar 2011
Last visit: 05 Jan 2024
Posts: 2,977
Own Kudos:
8,389
 [3]
Given Kudos: 1,646
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Expert
Expert reply
Posts: 2,977
Kudos: 8,389
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Geronimo
Is xy < 6

(1) x < 3 and y < 2

(2) 1/2 < x < 2/3 and y^2 < 64

We need to determine whether the product of x and y is less than 6.

Statement One Alone

x < 3 and y < 2

Using the information in statement one we do not have enough information to determine whether the product of x and y is less than 6. For example, if x = -4 and y = -2, the product of x and y is 8, which is greater than 6. However, if x = 0 and y = 0, the product of x and y is 0, which is less than 6. We can eliminate answer choices A and D.

Statement Two Alone

1/2 < x < 2/3 and y^2 < 64

Using the information in statement two, we see that x is less than 2/3 and that y is less than 8. Thus, the maximum product of x and y is less than (2/3)(8) = 16/3, which is less 5.33 and thus less than 6. Since the maximum product of x and y is less than 6, statement two is sufficient to answer the question. Note that we did not even consider the case when -8 < y < 0 because in that case, xy will be negative and thus will be less than 6.

Answer: B
User avatar
dcummins
Joined: 14 Feb 2017
Last visit: 08 Oct 2025
Posts: 1,064
Own Kudos:
Given Kudos: 368
Location: Australia
Concentration: Technology, Strategy
GMAT 1: 560 Q41 V26
GMAT 2: 550 Q43 V23
GMAT 3: 650 Q47 V33
GMAT 4: 650 Q44 V36
GMAT 5: 600 Q38 V35
GMAT 6: 710 Q47 V41
WE:Management Consulting (Consulting)
Products:
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Test values

Statement 1
x<3 and y<2
x=-6 y=-1 xy <6? No
x=2 y=1 xy <6? yes

Statement 2
Convert to decimal for ease
0.5 <x < 0.66 and -8<y<8

We don't need to bother with negative values for y since xy with a negative y will always be less than 6 since x is known to be >0

Maximise the value of y as a positive
y=8 (not allowed but maximise to see)
x=0.6
xy=4.8
Even when maximised xy<6

Sufficient
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,337
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sacmanitin
Is \(xy < 6\) ?

(1) \(x < 3\) and \(y < 2\)

(2) \(\frac{1}{2} < x < \frac{2}{3}\) and \(y^2 < 64\)

Target question: Is xy < 6?

Statement 1: x < 3 and y < 2
Let's TEST some values.
There are several values of x and y that satisfy statement 1. Here are two:
Case a: x = 0 and y = 0. In this case, xy = (0)(0) = 0. So, the answer to the target question is YES, xy IS less than 6
Case b: x = -5 and y = -5. In this case, xy = (-5)(-5) = 25. So, the answer to the target question is NO, xy is NOT less than 6
Since we cannot answer the target question with certainty, statement 1 is NOT SUFFICIENT

Statement 2: 1/2 < x < 2/3 and y² < 64
Let's see if we can find the greatest possible value of xy.
Since we can see that x is POSITIVE, the maximum value of xy will be achieved when y is also POSITIVE
From the inequality y² < 64, we can conclude that y < 8
He also know that x < 2/3
(8)(2/3) = 16/3 = 5 1/3 (which is less than 6)

Since x < 2/3 and y < 8, we can be certain that xy is less than 6
Since we can answer the target question with certainty, statement 2 is SUFFICIENT

Answer: B

Cheers,
Brent
avatar
ag153
Joined: 16 Feb 2017
Last visit: 15 May 2022
Posts: 88
Own Kudos:
Given Kudos: 56
Location: India
Concentration: Finance, Strategy
GPA: 3.69
Kudos
Add Kudos
Bookmarks
Bookmark this Post
What is the concept of multiplying two inequalities? WHy can we not mltiply the two here? And if we do, how to go about it? Bunuel JeffTargetTestPrep ScottTargetTestPrep nick1816
User avatar
Elite097
Joined: 20 Apr 2022
Last visit: 08 Oct 2025
Posts: 771
Own Kudos:
Given Kudos: 346
Location: India
GPA: 3.64
Posts: 771
Kudos: 553
Kudos
Add Kudos
Bookmarks
Bookmark this Post
What is the concept of multiplying two inequalities? WHy can we not mltiply the two here? And if we do, how to go about it? Bunuel JeffTargetTestPrep ScottTargetTestPrep nick1816 KarishmaB avigutman ThatDudeKnows
User avatar
ThatDudeKnows
Joined: 11 May 2022
Last visit: 27 Jun 2024
Posts: 1,070
Own Kudos:
977
 [1]
Given Kudos: 79
Expert
Expert reply
Posts: 1,070
Kudos: 977
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Elite097
What is the concept of multiplying two inequalities? WHy can we not mltiply the two here? And if we do, how to go about it? Bunuel JeffTargetTestPrep ScottTargetTestPrep nick1816 KarishmaB avigutman ThatDudeKnows

One of the most common things that the GMAT tests on inequalities is whether you know/remember to reverse the sign when you multiply by a negative number. If everything in both inequalities is greater than 0, you're safe. But if anything is less than 0 (or could be less than 0), there's no clean way to handle reversing the sign(s) (or even knowing whether to reverse the signs.

a>b>0 and p>r>0 --> ap*br>0 Yes

0>a>b and p>0>r (or any other set up whereby we have a negative or possible negative) --> Can't do it
User avatar
avigutman
Joined: 17 Jul 2019
Last visit: 30 Sep 2025
Posts: 1,293
Own Kudos:
1,930
 [1]
Given Kudos: 66
Location: Canada
GMAT 1: 780 Q51 V45
GMAT 2: 780 Q50 V47
GMAT 3: 770 Q50 V45
Expert
Expert reply
GMAT 3: 770 Q50 V45
Posts: 1,293
Kudos: 1,930
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Elite097
What is the concept of multiplying two inequalities? WHy can we not mltiply the two here? And if we do, how to go about
I sense that you're looking for a rule here, Elite097, but, well, it's complicated.
Unlike additive reasoning, with which we can safely infer that the sum of two bigger terms will be greater than the sum of two smaller terms (a.k.a. adding inequalities), multiplicative reasoning behaves differently depending on the positioning of the terms relative to -1, 0, and 1.
The inequalities in this problem allow x and y to be located on either side of those key tick marks on the number line, so we should probably avoid multiplying them.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,583
Own Kudos:
Posts: 38,583
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105379 posts
496 posts