GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 18 Oct 2019, 19:19 GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  Of the N candies in a bag, some are peppermint and the rest are

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

Manager  Status: struggling with GMAT
Joined: 06 Dec 2012
Posts: 118
Concentration: Accounting
GMAT Date: 04-06-2013
GPA: 3.65
Of the N candies in a bag, some are peppermint and the rest are  [#permalink]

Show Tags

2
15 00:00

Difficulty:   35% (medium)

Question Stats: 78% (02:01) correct 22% (02:04) wrong based on 242 sessions

HideShow timer Statistics

Of the N candies in a bag, some are peppermint and the rest are spearmint.What is the value of N?

(1) If 1 peppermint candy were removed from the N candies,1/5 of the remaining candies would be peppermint.

(2) If 2 spearmint candies were removed from the N candies, 1/4 of the remaining candies would be peppermint.
Verbal Forum Moderator B
Joined: 10 Oct 2012
Posts: 590
Re: Of the N candies in a bag, some are peppermint and the rest are  [#permalink]

Show Tags

3
mun23 wrote:
Of the N candies in a bag, some are peppermint and the rest are spearmint.What is the value of N?

(1)If 1 peppermint candy were removed from the N candies,1/5 of the remaining candies would be peppermint.

(2)If 2 spearmint candies were removed from the N candies, 1/4 of the remaining candies would be peppermint.

Need help

The number of Peppermint candies = x, Of Spearmint= N-x.

From F.S 1 , we have (N-1)/5 = (x-1)

or 5x - N = 4. Insufficient.

From F.S 2, we have (N-2)/4 = x

or N - 4x = 2. Insufficient.

Taken together, we can get a particular value for N. Sufficient.

C.
_________________
Manager  Joined: 04 Mar 2013
Posts: 65
Location: India
Concentration: General Management, Marketing
GPA: 3.49
WE: Web Development (Computer Software)
Re: Of the N candies in a bag, some are peppermint and the rest are  [#permalink]

Show Tags

mun23 wrote:
Of the N candies in a bag, some are peppermint and the rest are spearmint.What is the value of N?

(1)If 1 peppermint candy were removed from the N candies,1/5 of the remaining candies would be peppermint.

(2)If 2 spearmint candies were removed from the N candies, 1/4 of the remaining candies would be peppermint.

Need help

Stmt1: 2 unknowns one equation
stmt2 : 2 unknowns and one equation

combine both 2 equations and 2 unknowns so C
Director  V
Joined: 27 May 2012
Posts: 902
Re: Of the N candies in a bag, some are peppermint and the rest are  [#permalink]

Show Tags

mun23 wrote:
Of the N candies in a bag, some are peppermint and the rest are spearmint.What is the value of N?

(1)If 1 peppermint candy were removed from the N candies,1/5 of the remaining candies would be peppermint.

(2)If 2 spearmint candies were removed from the N candies, 1/4 of the remaining candies would be peppermint.

Need help

can any body help me here, may be I am missing something but even with using both the statements I am not able to get the value of N

P +S= N

1) $$\frac{1(N-1)}{5}= P-1 \rightarrow N= 5P-4$$

2) $$\frac{1(N-2)}{4} = S-2 \rightarrow N= 4S-6$$

Now can anybody show me how to get N ?

Thanks
_________________
- Stne
Verbal Forum Moderator B
Joined: 10 Oct 2012
Posts: 590
Re: Of the N candies in a bag, some are peppermint and the rest are  [#permalink]

Show Tags

1
stne wrote:
mun23 wrote:
Of the N candies in a bag, some are peppermint and the rest are spearmint.What is the value of N?

(1)If 1 peppermint candy were removed from the N candies,1/5 of the remaining candies would be peppermint.

(2)If 2 spearmint candies were removed from the N candies, 1/4 of the remaining candies would be peppermint.

Need help

can any body help me here, may be I am missing something but even with using both the statements I am not able to get the value of N

P +S= N

1) $$\frac{1(N-1)}{5}= P-1 \rightarrow N= 5P-4$$

2) $$\frac{1(N-2)}{4} = S-2 \rightarrow N= 4S-6$$

Now can anybody show me how to get N ?

Thanks

The correct equation for the second fact statement would be:

$$\frac{1(N-2)}{4} = P$$

Hope this helps
_________________
Director  V
Joined: 27 May 2012
Posts: 902
Re: Of the N candies in a bag, some are peppermint and the rest are  [#permalink]

Show Tags

mau5 wrote:
stne wrote:
mun23 wrote:
Of the N candies in a bag, some are peppermint and the rest are spearmint.What is the value of N?

(1)If 1 peppermint candy were removed from the N candies,1/5 of the remaining candies would be peppermint.

(2)If 2 spearmint candies were removed from the N candies, 1/4 of the remaining candies would be peppermint.

Need help

can any body help me here, may be I am missing something but even with using both the statements I am not able to get the value of N

P +S= N

1) $$\frac{1(N-1)}{5}= P-1 \rightarrow N= 5P-4$$

2) $$\frac{1(N-2)}{4} = S-2 \rightarrow N= 4S-6$$

Now can anybody show me how to get N ?

Thanks

The above part involves peppermints, not spearmints.

Hope this helps

Thundering Typhoons! Cue for me to take a break.
Thank you +1

1) $$\frac{1(N-1)}{5}= P-1 \rightarrow N= 5P- 4$$ ..1
2) $$\frac{1(N-2)}{4} =P \hs{15} \rightarrow N= 4P+2$$ ..2

4P+2 =5P-4
p=6 ( Put in 1 or 2 )

Then N= 26
_________________
- Stne
Manager  Joined: 26 Feb 2015
Posts: 110
Re: Of the N candies in a bag, some are peppermint and the rest are  [#permalink]

Show Tags

I put E for this question because I mismanaged to translate the word problem into math.

in (2) I couldnt get all the variables to match into one equation. Why is "S" never part of the equation?
Manager  Joined: 10 May 2014
Posts: 136
Re: Of the N candies in a bag, some are peppermint and the rest are  [#permalink]

Show Tags

2
1
This problem can easily be solved by following the rule that states that to solve for a variable we need the same number of distinct, linear equations as variables.
I hope you find my approach "elegant"

Question (Given)
N = p + s
N = ?
We have 3 variables and 1 equation

Statement 1
(p - 1)/s = 1/4
When we combine this statement with the given info, we yield 3 variables and 2 equations. Insufficient

Statement 2
(s - 2)/p = 3/1
When we combine this statement with the given info, we yield 3 variables and 2 equations. Insufficient

Therefore, we need to combine both statements to get 3 variables and 3 equations. Of course, no need to do the actual calculation.
Correct Answer = C

Bonus Track: In case you REALLY want to know the value of variables: p = 6 and s = 20, thereby N = 26.
_________________
Consider giving me Kudos if I helped, but don´t take them away if I didn´t! What would you do if you weren´t afraid?
Current Student S
Joined: 26 Dec 2011
Posts: 193
Location: United States (NY)
Concentration: Finance, Entrepreneurship
GPA: 3.4
WE: Investment Banking (Investment Banking)
Re: Of the N candies in a bag, some are peppermint and the rest are  [#permalink]

Show Tags

I am having an issue translating Statement 2 for some reason. I am fine on S1

On Statement 2, could I not do $$\frac{(s-2)}{(n-2)}$$ = $$\frac{3}{4}$$ (in that 3/4 of remaining candies are Spearmint)?
_________________
Please give KUDOS if this post was helpful!
Math Expert V
Joined: 02 Aug 2009
Posts: 7978
Re: Of the N candies in a bag, some are peppermint and the rest are  [#permalink]

Show Tags

1
okay wrote:
I am having an issue translating Statement 2 for some reason. I am fine on S1

On Statement 2, could I not do $$\frac{(s-2)}{(n-2)}$$ = $$\frac{3}{4}$$ (in that 3/4 of remaining candies are Spearmint)?

yes you can.. it also leads to same..

$$\frac{(s-2)}{(n-2)}$$ = $$\frac{3}{4}$$..
now s-2=(n-2)-p..
substitute
$$\frac{(s-2)}{(n-2)}=\frac{(n-2)-p}{n-2}=\frac{n-2}{n-2}-\frac{p}{n-2}=1-\frac{p}{n-2}=\frac{3}{4}$$...
$$\frac{p}{n-2}=1-\frac{3}{4}=\frac{1}{4}$$
now these is same as the statement II
_________________
Director  D
Joined: 24 Oct 2016
Posts: 533
GMAT 1: 670 Q46 V36 GMAT 2: 690 Q47 V38 Of the N candies in a bag, some are peppermint and the rest are  [#permalink]

Show Tags

mun23 wrote:
Of the N candies in a bag, some are peppermint and the rest are spearmint.What is the value of N?

(1) If 1 peppermint candy were removed from the N candies,1/5 of the remaining candies would be peppermint.

(2) If 2 spearmint candies were removed from the N candies, 1/4 of the remaining candies would be peppermint.

N = P + S = ?

1) (P - 1)/S = 1/4
4P - S = 4
Not Sufficient

2) P/(S-2) = 1/3
3P - S = -2
Not Sufficient

1+2)
2 equations and 2 unknowns. Can be solved to get P + S = 6 + 20 = 26
Sufficient

_________________

If you found my post useful, KUDOS are much appreciated. Giving Kudos is a great way to thank and motivate contributors, without costing you anything. Of the N candies in a bag, some are peppermint and the rest are   [#permalink] 08 Oct 2019, 04:41
Display posts from previous: Sort by

Of the N candies in a bag, some are peppermint and the rest are

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne  