Last visit was: 18 Nov 2025, 23:48 It is currently 18 Nov 2025, 23:48
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
amanvermagmat
User avatar
Retired Moderator
Joined: 22 Aug 2013
Last visit: 28 Mar 2025
Posts: 1,148
Own Kudos:
2,854
 [65]
Given Kudos: 480
Location: India
Posts: 1,148
Kudos: 2,854
 [65]
7
Kudos
Add Kudos
58
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
amanvermagmat
User avatar
Retired Moderator
Joined: 22 Aug 2013
Last visit: 28 Mar 2025
Posts: 1,148
Own Kudos:
2,854
 [19]
Given Kudos: 480
Location: India
Posts: 1,148
Kudos: 2,854
 [19]
10
Kudos
Add Kudos
9
Bookmarks
Bookmark this Post
General Discussion
User avatar
sushforgmat
Joined: 26 Dec 2017
Last visit: 30 Jul 2021
Posts: 72
Own Kudos:
35
 [1]
Given Kudos: 92
Location: India
Concentration: Technology, Marketing
WE:General Management (Internet and New Media)
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
GmatPoint
Joined: 02 Jan 2022
Last visit: 13 Oct 2022
Posts: 247
Own Kudos:
137
 [2]
Given Kudos: 3
GMAT 1: 760 Q50 V42
GMAT 1: 760 Q50 V42
Posts: 247
Kudos: 137
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Let us first consider the red box.
The average length of ropes = 60 cm
Therefore, the sum of the length of ropes in the red box = 7 x 60 = 420 cm
We have been given that the median value is 45 cm. Since the number of ropes in the red box is 7 (an odd number), the median represents the middle value when we arrange the ropes in either ascending or descending order of their lengths.
For instance, if we arrange the ropes in ascending order of their lengths, we get:
__ __ __ 45 __ __ __
Note: Here the spaces correspond to the lengths of the ropes.

We can follow the same steps as above for the blue box:
The average length of ropes = 50 cm
Sum of lengths = 5 x 50 = 250 cm
Median = 24 cm
Arranging the ropes in ascending order of their lengths:
__ __ 24 __ __

Let us now examine the statements individually.

Statement 1: Out of 5 ropes in the blue box, none of the ropes is longer than 89 cm.

If we observe the series, __ __ 24 __ __, we can say the two digits to the left of 24 cannot exceed 24 since they are in ascending order. If we assume their value to be maximum, i.e. 24 cm, we get the sum of the first three terms as 72 cm. Then, the sum of the last two terms = 250 - 72 = 178 cm. Hence, the sum of the last two terms can be greater than or equal to 178 cm, while the first two values can take values that are less than or equal to 24 cm.
However, if we notice closely, 178 = 89 x 2. Statement 1 explicitly mentions that the maximum length of a rope in the blue box cannot exceed 89 cm. Thus, we can have only one case such that the arrangement:
24 24 24 89 89.

However, when we combine the 12 ropes, we get(in ascending order):
24 24 24 45 89 89 [Here, we have not considered the unknown values].

The 3 values to the left of 45 in the original series will appear to the left of 45 in this series as well, and the 3 values to the right of 45 in the original series will appear to the right of 45 in this series as well.
So, one thing that we are sure of is that 45 is the 7th number of this series. We need to find the 6th number as well in order to calculate the mean of the two middle values and get the median. However, we can have a variety of ways to distribute the remaining sum among the remaining six numbers. For example, the number to the immediate left of 45 might be 45 as well, and 44 as well, and so on, to state a few. Hence, we cannot conclusively reach the answer.
Statement 1 in itself is not sufficient to answer the question.

Statement 2: Out of 7 ropes in the red box, none of the ropes is longer than 80 cm.

If we observe the series, __ __ __ 45 __ __ __, we can say the two digits to the left of 45 cannot exceed 45 since they are in ascending order. If we assume their value to be 45, we get the sum of the first four terms as 180. Then, the last three terms = 420 - 180 = 240 cm. Hence, the sum of the last three terms can be greater than or equal to 240 cm since the first three terms can take values less than or equal to 45 cm.

However, on looking closely, 240 = 80 x 3, and since statement 2 says that the maximum length of a rope in the blue box cannot exceed 80 cm, we can have only one case:
45 45 45 45 80 80 80.

However, when we combine the 12 ropes, we get(in ascending order):
__ __ 24 45 45 45 45 80 80 80

[We do not know where the two blank spaces greater than 24 will fit in this series.]

On closely observing this series of 10 terms, we see that the four terms in the middle are all identical. So, whether we insert the remaining two terms to the left of 45 (value < 45) or the right of 45 (value > 45), the 6th and 7th terms will be 45 each in all cases. Even if one of the new numbers entered is 45, the 6th and 7th terms remain 45. Hence, the median is the average of the middle terms = 45 cm. Hence, Statement 2 alone is sufficient to determine the median.

Therefore, we can say that Option (B) is the correct answer.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,582
Own Kudos:
Posts: 38,582
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105375 posts
496 posts