It is currently 13 Dec 2017, 20:38

Decision(s) Day!:

CHAT Rooms | Ross R1 | Kellogg R1 | Darden R1 | Tepper R1


Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Tom, working alone, can paint a room in 6 hours. Peter and John

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

4 KUDOS received
Intern
Intern
avatar
Joined: 17 Jan 2012
Posts: 41

Kudos [?]: 199 [4], given: 16

GMAT 1: 610 Q43 V31
Tom, working alone, can paint a room in 6 hours. Peter and John [#permalink]

Show Tags

New post 27 Jan 2012, 12:19
4
This post received
KUDOS
21
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

64% (01:58) correct 36% (01:56) wrong based on 725 sessions

HideShow timer Statistics

Tom, working alone, can paint a room in 6 hours. Peter and John, working independently, can paint the same room in 3 hours and 2 hours, respectively. Tom starts painting the room and works on his own for one hour. He is then joined by Peter and they work together for an hour. Finally, John joins them and the three of them work together to finish the room, each one working at his respective rate. What fraction of the whole job was done by Peter?

A. 1/9
B. 1/6
C. 1/3
D. 7/18
E. 4/9

[Reveal] Spoiler:
First Hr :
T starts working and in 1 hour can finish 1/6 of the job

Second Hr:
T & P starts working and in an hr can finish 1/6+1/3 = 3/6 of the job. So Total 4/6 of the job is finished by now

Third Hr:
T,P & J starts working but they have only 2/6 of the job remaining.
Working together they need one hr to finish the entire job (work formula 1/6+1/3+1/2 = 1/1 = 1 hr)
so they work only for 2/6 of an hour.
THerefore peter working at a rate of 1/3 can do only 1/3*2/6 = 1/9 of the job before the job is finished.

Total Job done by Peter = 1/3+1/9 = 4/9

Is there a shorter or quicker way to do it?
[Reveal] Spoiler: OA

Last edited by Bunuel on 23 Nov 2017, 04:30, edited 2 times in total.
Edited the question.

Kudos [?]: 199 [4], given: 16

Expert Post
18 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42597

Kudos [?]: 135562 [18], given: 12699

Tom, working alone, can paint a room in 6 hours. Peter and John [#permalink]

Show Tags

New post 27 Jan 2012, 12:55
18
This post received
KUDOS
Expert's post
16
This post was
BOOKMARKED
docabuzar wrote:
Tom, working alone, can paint a room in 6 hours. Peter and John, working independently, can paint the same room in 3 hours and 2 hours, respectively. Tom starts painting the room and works on his own for one hour. He is then joined by Peter and they work together for an hour. Finally, John joins them and the three of them work together to finish the room, each one working at his respective rate. What fraction of the whole job was done by Peter?

A. 1/9
B. 1/6
C. 1/3
D. 7/18
E. 4/9


Let the time when all three were working together be t hours. Then:

Tom worked for t+2 hours and has done 1/6*(t+2) part of the job;
Peter worked for t+1 hours and has done 1/3*(t+1) part of the job;
John worked for t hours and has done 1/2*t part of the job:

\(\frac{1}{6}*(t+2)+\frac{1}{3}*(t+1)+\frac{1}{2}*t=1\)
Multiply by 6: \((t+2)+(2t+2)+3t=6\);
\(t=\frac{1}{3}\).

Hence Peter has done \(\frac{1}{3}*(\frac{1}{3}+1)=\frac{4}{9}\) part of the job.

Answer: E.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135562 [18], given: 12699

8 KUDOS received
Senior Manager
Senior Manager
User avatar
Joined: 13 Aug 2012
Posts: 457

Kudos [?]: 570 [8], given: 11

Concentration: Marketing, Finance
GPA: 3.23
GMAT ToolKit User
Re: Tom, working alone, can paint a room in 6 hours. Peter and John [#permalink]

Show Tags

New post 15 Nov 2012, 00:15
8
This post received
KUDOS
2
This post was
BOOKMARKED
First hour with Tom working: \(W=\frac{1}{6}(1)=\frac{1}{6}\)
Second hour with Peter and Tom: \(W=\frac{1}{6}+\frac{1}{3}=1/2\)

Remaining work:\(W=1-\frac{1}{6}-\frac{1}{2}=1/3\)

time left with all three: \(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}(t)=1/3==>t=\frac{1}{3}hr\)

Therefore, Peter worked for \(1\frac{1}{3}hr==>W=\frac{1}{3}(1\frac{1}{3})=\frac{4}{9}\)

Answer:E
_________________

Impossible is nothing to God.

Kudos [?]: 570 [8], given: 11

Intern
Intern
avatar
Joined: 22 Aug 2013
Posts: 3

Kudos [?]: [0], given: 2

Re: Tom, working alone, can paint a room in 6 hours. Peter and John [#permalink]

Show Tags

New post 24 Aug 2013, 01:38
mbaiseasy wrote:
First hour with Tom working: \(W=\frac{1}{6}(1)=\frac{1}{6}\)
Second hour with Peter and Tom: \(W=\frac{1}{6}+\frac{1}{3}=1/2\)

Remaining work:\(W=1-\frac{1}{6}-\frac{1}{2}=1/3\)

time left with all three: \(\frac{1}{6}+\frac{1}{3}+\frac{1}{2}(t)=1/3==>t=\frac{1}{3}hr\)

Therefore, Peter worked for \(1\frac{1}{3}hr==>W=\frac{1}{3}(1\frac{1}{3})=\frac{4}{9}\)

Answer:E


Could you please explain after the 1/3 remaining. I understood until all 3 complete 1 work together,so from this point on wards what is the work remaining ?

Previous case tom and peter complete (1/6+1/3) in one hour so total work completed is (1/6+1/2) is 2/3 , now when peter,tom and jack together work (1/6+1/2+1/3) is 1.Does that mean work gets completed when peter comes in,should the work be added 2/3+1 .

1/3 work is to be completed so how do you proceed from here.
Thanks.

Kudos [?]: [0], given: 2

Expert Post
3 KUDOS received
MBA Section Director
User avatar
P
Status: Back to work...
Affiliations: GMAT Club
Joined: 21 Feb 2012
Posts: 4832

Kudos [?]: 3850 [3], given: 2464

Location: India
City: Pune
GMAT 1: 680 Q49 V34
GPA: 3.4
WE: Business Development (Manufacturing)
GMAT ToolKit User Premium Member
Re: Tom, working alone, can paint a room in 6 hours. Peter and John [#permalink]

Show Tags

New post 24 Aug 2013, 02:05
3
This post received
KUDOS
Expert's post
Tom, working alone, can paint a room in 6 hours. :- Tom is finishing 100/6 i.e. 16.66% of the work in 1 hour.

Peter, working independently, can paint the same room in 3 hours. :- Peter is finishing 100/3 i.e. 33.33% of the work in 1 hour.

John, working independently, can paint the same room in 2 hours. :- Tom is finishing 100/2 i.e. 50% of the work in 1 hour.

Tom starts painting the room and works on his own for one hour. :- Tom Completed 16.66 of the work. 83.34% work is balance

He is then joined by Peter and they work together for an hour. :- Tom + Peter Completed (16.66% + 33.33% = 50%) of the work. 33.33% work is balance
Finally, John joins them and the three of them work together to finish the room :- Together Tom + Peter + John Complete (16.66% + 33.33% + 50= 100%) work in 1 hour, So to finish balance 33.33% work it would take them \(\frac{33.33}{100} = \frac{1}{3} hour.\)

What fraction of the whole job was done by Peter? :- We know Peter worked for \(1 + \frac{1}{3} hour.\) He must have completed \(33.33 + \frac{1}{3}(33.33)\) work ------> He completed 44.44% work which equals to \(\frac{4}{9}\)
_________________

100+ Interview Debriefs from GMAT Club members

Must Read Forum Topics Before You Kick Off Your MBA Application

New GMAT Club Decision Tracker - Real Time Decision Updates

Kudos [?]: 3850 [3], given: 2464

2 KUDOS received
Director
Director
User avatar
Joined: 10 Mar 2013
Posts: 589

Kudos [?]: 492 [2], given: 200

Location: Germany
Concentration: Finance, Entrepreneurship
GMAT 1: 580 Q46 V24
GPA: 3.88
WE: Information Technology (Consulting)
GMAT ToolKit User
Re: Tom, working alone, can paint a room in 6 hours. Peter and John [#permalink]

Show Tags

New post 29 Nov 2015, 12:14
2
This post received
KUDOS
2
This post was
BOOKMARKED
Let's use smart numbers here --> Work=18
Rate * Time = Work
Tom: 3 x 6 = 18
Peter: 6 x 3 = 18
John: 9 x 2 = 18

Before John joined Tom and Peter: Tom worked 2 Hours -> 2*3=6 and Peter 1*6=6 gives us 12. So we are left with 18-12=6 for all three of them --> (3+6+9)*t=6, thus t=1/3 this means that Peter worked 2+1/3 Hours = 6+2=8 --> 8/18=4/9
At least this approach helps me... Don't like dealind with fractions when you're tired.
_________________

When you’re up, your friends know who you are. When you’re down, you know who your friends are.

Share some Kudos, if my posts help you. Thank you !

800Score ONLY QUANT CAT1 51, CAT2 50, CAT3 50
GMAT PREP 670
MGMAT CAT 630
KAPLAN CAT 660

Kudos [?]: 492 [2], given: 200

Manager
Manager
User avatar
B
Joined: 20 Jan 2017
Posts: 63

Kudos [?]: 8 [0], given: 15

Location: United States (NY)
Schools: CBS '20 (A)
GMAT 1: 750 Q48 V44
GMAT 2: 610 Q34 V41
GPA: 3.92
Reviews Badge
Re: Tom, working alone, can paint a room in 6 hours. Peter and John [#permalink]

Show Tags

New post 03 Feb 2017, 06:26
T-1/6
P-2/6
J-3/6

1*1/6+1*(1/6+2/6)+x(1/6+2/6+3/6)=1
4/6+x*1=1
x=2/6=1/3

P=2/6+2/6*1/3=2/6+2/18=8/18=4/9

Posted from my mobile device

Kudos [?]: 8 [0], given: 15

Intern
Intern
avatar
B
Joined: 09 Oct 2016
Posts: 26

Kudos [?]: 2 [0], given: 13

Re: Tom, working alone, can paint a room in 6 hours. Peter and John [#permalink]

Show Tags

New post 07 Apr 2017, 12:54
Let`s first put some value to the area of the room to make this problem easier to solve. We are looking for a value that is advisable by the working rate of each one, Tom =6, Peter = 3, and John = 2. So the best value for the room area is 6x3x2 = 36 feet.
Tom starts painting the room and works on his own for one hour, so he paint 6 feet of the room, and 30 feet is the remaining.
He is then joined by Peter and they work together for an hour, so Tom paint another 6 feet, Peter paint 12 feet, and 30 – 6 -12 = 12 feet is the remaining.
Finally, John joins them and the three of them work together to finish the room, each one working at his respective rate. Here we need to divide the remaining 6 feet among Tom, Peter and John based on their working rate. Tom = 12/6 = 2 feet, Peter = 12/3 = 4 feet, and John = 12/2 =6feet.
What fraction of the whole job was done by Peter?
Peter fraction = (12+4)/36 =4/9 ---D

Last edited by nawaf52 on 08 Apr 2017, 19:20, edited 1 time in total.

Kudos [?]: 2 [0], given: 13

BSchool Forum Moderator
avatar
G
Joined: 03 Aug 2016
Posts: 252

Kudos [?]: 86 [0], given: 46

Location: Canada
GMAT 1: 660 Q44 V38
GMAT 2: 690 Q46 V40
GPA: 3.9
WE: Information Technology (Consumer Products)
Premium Member CAT Tests
Re: Tom, working alone, can paint a room in 6 hours. Peter and John [#permalink]

Show Tags

New post 07 Apr 2017, 13:03
So i used different approach. I wasnt able to solve it, but brought it down to two options.
If peter worked for one hour thats 33% of work and he worked with tom n john after that so technically he finished more than 33%.
That eliminates A,B and C.

And then i guessed D. I know its a wrong answer but better chance at guessing out of 2 than out of 5.
_________________

My MBA Journey - https://smalldoubledouble.com

Kudos [?]: 86 [0], given: 46

Manager
Manager
User avatar
G
Joined: 13 Aug 2015
Posts: 203

Kudos [?]: 71 [0], given: 64

GMAT 1: 710 Q49 V38
GPA: 3.82
WE: Corporate Finance (Retail Banking)
GMAT ToolKit User Reviews Badge
Re: Tom, working alone, can paint a room in 6 hours. Peter and John [#permalink]

Show Tags

New post 27 May 2017, 17:50
1
This post was
BOOKMARKED
Tom's individual rate is 1 job / 6 hours or 1/6.
During the hour that Tom works alone, he completes 1/6 of the job (using rt = w).

Peter's individual rate is 1 job / 3 hours.
Peter joins Tom and they work together for another hour; Peter and Tom's respective individual rates can be added together to calculate their combined rate: 1/6 + 1/3 = 1/2.
Working together then they will complete 1/2 of the job in the 1 hour they work together.

At this point, 2/3 of the job has been completed (1/6 by Peter alone + 1/2 by Peter and Tom), and 1/3 remains.

When John joins Tom and Peter, the new combined rate for all three is: 1/6 + 1/3 + 1/2 = 1.
The time that it will take them to finish the remaining 1/3 of the job can be solved:
rt = w (1)(t) = 1/3 t = 1/3.

The question asks us for the fraction of the job that Peter completed. In the hour that Peter worked with Tom he alone completed: rt = w w = (1/3)(1) = 1/3 of the job.
In the last 1/3 of an hour that all three worked together, Peter alone completed:
(1/3)(1/3) = 1/9 of the job.
Adding these two values together, we get 1/3 + 1/9 of the job = 4/9 of the job.

The correct answer is E.
_________________

If you like my posts, please give kudos. Help me unlock gmatclub tests.

Kudos [?]: 71 [0], given: 64

Intern
Intern
avatar
B
Joined: 29 Sep 2017
Posts: 3

Kudos [?]: 0 [0], given: 22

Re: Tom, working alone, can paint a room in 6 hours. Peter and John [#permalink]

Show Tags

New post 23 Nov 2017, 03:27
Bunuel wrote:
Hence Peter has done 1/3*(1/3+1)=4/9 part of the job.


can you explain this part please?

Kudos [?]: 0 [0], given: 22

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42597

Kudos [?]: 135562 [0], given: 12699

Re: Tom, working alone, can paint a room in 6 hours. Peter and [#permalink]

Show Tags

New post 23 Nov 2017, 04:36
abhishek94 wrote:
Bunuel wrote:
docabuzar wrote:
Tom, working alone, can paint a room in 6 hours. Peter and John, working independently, can paint the same room in 3 hours and 2 hours, respectively. Tom starts painting the room and works on his own for one hour. He is then joined by Peter and they work together for an hour. Finally, John joins them and the three of them work together to finish the room, each one working at his respective rate. What fraction of the whole job was done by Peter?

A. 1/9
B. 1/6
C. 1/3
D. 7/18
E. 4/9


Let the time when all three were working together be t hours. Then:

Tom worked for t+2 hours and has done 1/6*(t+2) part of the job;
Peter worked for t+1 hours and has done 1/3*(t+1) part of the job;
John worked for t hours and has done 1/2*t part of the job:

\(\frac{1}{6}*(t+2)+\frac{1}{3}*(t+1)+\frac{1}{2}*t=1\)
Multiply by 6: \((t+2)+(2t+2)+3t=6\);
\(t=\frac{1}{3}\).

Hence Peter has done \(\frac{1}{3}*(\frac{1}{3}+1)=\frac{4}{9}\) part of the job.

Answer: E.

Hence Peter has done 1/3*(1/3+1)=4/9 part of the job.


can you explain this part please?


Peter worked for t+1 hours at the rate of 1/3 job hour, so in t+1 hour and has done 1/3*(t+1) part of the job. t = 1/3, so he's done \(time*rate=\frac{1}{3}*(\frac{1}{3}+1)=\frac{4}{9}\) part of the job.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 135562 [0], given: 12699

Re: Tom, working alone, can paint a room in 6 hours. Peter and   [#permalink] 23 Nov 2017, 04:36
Display posts from previous: Sort by

Tom, working alone, can paint a room in 6 hours. Peter and John

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.