Bunuel
\((-1)^{(-\frac{1}{3})}(-8)^{(-\frac{1}{3})}(-27)^{(-\frac{1}{3})}(-64)^{(-\frac{1}{3})} =\)
A. 24
B. 1/24
C. -1/24
D. -24
E. It cannot be determined from the information given.
If factoring out the negative exponent is unfamiliar, you can take a very traditional route (not too time-consuming -- I was under a minute and I checked accuracy with another method)
\((-1)^{(-\frac{1}{3})}(-8)^{(-\frac{1}{3})}(-27)^{(-\frac{1}{3})}(-64)^{(-\frac{1}{3})} =\)
\(\frac{1}{\sqrt[3]{-1}}\) * \(\frac{1}{\sqrt[3]{-8}}\) * \(\frac{1}{\sqrt[3]{-27}}\) * \(\frac{1}{\sqrt[3]{-64}}\) = **
\(\frac{1}{-1}\) * \(\frac{1}{-2}\) * \(\frac{1}{-3}\) * \(\frac{1}{-4}\)
Multiply the denominators. The answer will be positive because there are an even number of negative factors, that is (-)(-)(-)(-) = (+)
\(\frac{1}{24}\)
ANSWER B
** If thinking in fractional exponents is easier
, this stage of the expression could be written
\(\frac{1}{(-1)^{\frac{1}{3}}}\) * \(\frac{1}{(-8)^{\frac{1}{3}}}\) * \(\frac{1}{(-27)^{\frac{1}{3}}}\) * \(\frac{1}{(-64)^{\frac{1}{3}}}\)