Last visit was: 12 Dec 2024, 04:53 It is currently 12 Dec 2024, 04:53
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 12 Dec 2024
Posts: 97,842
Own Kudos:
685,245
 [8]
Given Kudos: 88,254
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,842
Kudos: 685,245
 [8]
2
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 12 Dec 2024
Posts: 97,842
Own Kudos:
685,245
 [5]
Given Kudos: 88,254
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,842
Kudos: 685,245
 [5]
2
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
General Discussion
avatar
vinit9211
Joined: 06 May 2014
Last visit: 27 Nov 2014
Posts: 4
Own Kudos:
8
 [2]
Given Kudos: 3
Posts: 4
Kudos: 8
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
DangerPenguin
Joined: 10 Sep 2014
Last visit: 22 Dec 2014
Posts: 91
Own Kudos:
Given Kudos: 25
Posts: 91
Kudos: 105
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Bunuel

Tough and Tricky questions: Algebra.



We can see that \(a\) must equal 1; \(a\) is not 0 because there is no way for \(16b + 4c + d\) to add up to 44, and \(a\) is not -1 because there is no way for \(-64 +16b + 4c + d\) to add up to 44. By the same reasoning we used above, we know that \(d = 0\). Substitute to get: \(64 + 16b + 4c = 44\). Simplify: \(16b + 4c = -20\). Thus, \(b = -1\) and \(c = -1\).

We have solved for the value of each variable, so we can find the only possible value for the sum \(a + b + c + d\). Statement 2 is sufficient to answer the question.


Answer: B.

How did you conclude A=1 so quickly? Why not 2 or 3?

edit: haha oops, the answer to my question is given...
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 12 Dec 2024
Posts: 97,842
Own Kudos:
Given Kudos: 88,254
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,842
Kudos: 685,245
Kudos
Add Kudos
Bookmarks
Bookmark this Post
DangerPenguin
Bunuel
Bunuel

Tough and Tricky questions: Algebra.



We can see that \(a\) must equal 1; \(a\) is not 0 because there is no way for \(16b + 4c + d\) to add up to 44, and \(a\) is not -1 because there is no way for \(-64 +16b + 4c + d\) to add up to 44. By the same reasoning we used above, we know that \(d = 0\). Substitute to get: \(64 + 16b + 4c = 44\). Simplify: \(16b + 4c = -20\). Thus, \(b = -1\) and \(c = -1\).

We have solved for the value of each variable, so we can find the only possible value for the sum \(a + b + c + d\). Statement 2 is sufficient to answer the question.


Answer: B.

How did you conclude A=1 so quickly? Why not 2 or 3?

We are given that each of the numbers a, b, c, d is equal to -1, 0, or 1.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 35,791
Own Kudos:
Posts: 35,791
Kudos: 929
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderator:
Math Expert
97842 posts