\(\frac{1}{A}\)+\(\frac{1}{B}\)=\(\frac{1}{15}\)
\(\frac{1}{C}\)+\(\frac{1}{D}\)=\(\frac{1}{15}\)
--> \(\frac{1}{A}\)+\(\frac{1}{D}\)=\(\frac{1}{10}\)
--> \(\frac{1}{B}\)+\(\frac{1}{C}\)=\(\frac{1}{30}\)
\(\frac{1}{B}\)=\(\frac{1}{40}\)
--> (\(\frac{1}{B}\)+\(\frac{1}{D}\))=\(\frac{1}{x}\)
--> (\(\frac{1}{A}\)+\(\frac{1}{C}\))=\(\frac{1}{y}\)
-----------------
\(\frac{x}{y}\)=?
\(\frac{1}{C}\)=\(\frac{1}{30}\)-\(\frac{1}{40}\)=\(\frac{1}{120}\)
\(\frac{1}{D}\)=\(\frac{1}{15}\)-\(\frac{1}{120}\)=\(\frac{7}{120}\)
\(\frac{1}{A}\)=\(\frac{1}{15}\)-\(\frac{1}{40}\)=\(\frac{(8-3)}{120}\)=\(\frac{5}{120}\)
\(\frac{1}{B}\)+\(\frac{1}{D}\)=\(\frac{1}{40}\)+\(\frac{7}{120}\)=\(\frac{10}{120}\)=\(\frac{1}{12}\)=\(\frac{1}{x}\) --> x=12
\(\frac{1}{A}\)+\(\frac{1}{C}\)=\(\frac{5}{120}\)+\(\frac{1}{120}\)=\(\frac{6}{120}\)=\(\frac{1}{20}\)=\(\frac{1}{y}\)--> y=20
--> \(\frac{x}{y}\)=\(\frac{12}{20}\)=\(\frac{3}{5}\)
The answer choice is B