GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 23 Oct 2019, 16:25

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# If 0.000027*10^x/900*10^(-4) = 0.03*10^11, what is the value of x?

Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 58464
If 0.000027*10^x/900*10^(-4) = 0.03*10^11, what is the value of x?  [#permalink]

### Show Tags

26 Aug 2018, 06:35
00:00

Difficulty:

35% (medium)

Question Stats:

72% (01:49) correct 28% (02:23) wrong based on 36 sessions

### HideShow timer Statistics

If $$\frac{0.000027*10^x}{900*10^{-4}}= 0.03*10^{11}$$, what is the value of x?

(A) 13
(B) 14
(C) 15
(D) 16
(E) 17

_________________
Intern
Joined: 25 Aug 2018
Posts: 4
Re: If 0.000027*10^x/900*10^(-4) = 0.03*10^11, what is the value of x?  [#permalink]

### Show Tags

26 Aug 2018, 06:45
27/(9×10^8)*10^(x+4)=3*10^9
3×10^(x-4)=3×10^9
X-4=9
X=13

Posted from my mobile device
VP
Joined: 31 Oct 2013
Posts: 1468
Concentration: Accounting, Finance
GPA: 3.68
WE: Analyst (Accounting)
If 0.000027*10^x/900*10^(-4) = 0.03*10^11, what is the value of x?  [#permalink]

### Show Tags

26 Aug 2018, 10:56
Bunuel wrote:
If $$\frac{0.000027*10^x}{900*10^{-4}}= 0.03*10^{11}$$, what is the value of x?

(A) 13
(B) 14
(C) 15
(D) 16
(E) 17

$$\frac{0.000027 * 10^x}{900 * 10^{-4}}$$= $$0.03*10^{11}$$

$$\frac{0.000027 * 10^{x+4}}{900}$$ = $$3 * 10^9$$

$$\frac{27 * 10^{x + 4 - 6}}{900}$$ = $$3* 10^9$$

$$\frac{9 * 10^{x + 4 - 6}}{900}$$ = $$10^9$$

$$\frac{10^{x + 4 - 6}}{100}$$= $$10^9$$

$$\frac{10^{x - 2}}{10^2}$$= $$10^9$$

$$10^{x - 2 -2} = 10^9$$

x - 4 = 9

x = 13.

Thus the best answer is A.
VP
Status: Learning stage
Joined: 01 Oct 2017
Posts: 1011
WE: Supply Chain Management (Energy and Utilities)
Re: If 0.000027*10^x/900*10^(-4) = 0.03*10^11, what is the value of x?  [#permalink]

### Show Tags

26 Aug 2018, 10:59
Bunuel wrote:
If $$\frac{0.000027*10^x}{900*10^{-4}}= 0.03*10^{11}$$, what is the value of x?

(A) 13
(B) 14
(C) 15
(D) 16
(E) 17

$$\frac{0.000027*10^x}{900*10^{-4}}= 0.03*10^{11}$$
Or, $$\frac{27*10^{-6}*10^x}{9*10^2*10^{-4}}= 3*10^{-2}*10^{11}$$
Or, $$\frac{27*10^{-6+x}}{9*10^{2+(-4)}}= 3*10^{-2+11}$$
Or, $$\frac{27*10^{-6+x}}{9*10^{-2}}= 3*10^9$$
Or, $$3*10^{-6+x-(-2)}= 3*10^9$$
Or, $$10^{-4+x}=10^9$$
Or, -4+x=9
Or, x=9+4=13

Ans. (A)
_________________
Regards,

PKN

Rise above the storm, you will find the sunshine
Re: If 0.000027*10^x/900*10^(-4) = 0.03*10^11, what is the value of x?   [#permalink] 26 Aug 2018, 10:59
Display posts from previous: Sort by