December 16 , 2018

December 16 , 2018

07:00 AM PST

09:00 AM PST

Get personalized insights on how to achieve your Target Quant Score.

December 16 , 2018

December 16 , 2018

03:00 PM EST

04:00 PM EST

Strategies and techniques for approaching featured GMAT topics

Author
Message
TAGS:

Hide Tags
Director

Status: I don't stop when I'm Tired,I stop when I'm done

Joined: 11 May 2014

Posts: 537

Location: Bangladesh

Concentration: Finance, Leadership

GPA: 2.81

WE: Business Development (Real Estate)

If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =
[#permalink ]

Show Tags
Updated on: 12 Jul 2017, 09:59
Question Stats:

74% (00:50) correct

26% (00:48) wrong

based on 840 sessions

Hide Show timer Statistics
If \((\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})\), then r =

A. \(\frac{1}{3}\)

B. \(\frac{4}{3}\)

C. 3

D. 4

E. 12

Attachment:

2018.OG.05.072.q.png [ 4.16 KiB | Viewed 7890 times ]
Official Answer and Stats are available only to registered users.

Register /

Login .

_________________

Md. Abdur Rakib Please Press +1 Kudos,If it helps Sentence Correction -Collection of Ron Purewal's "elliptical construction/analogies" for SC Challenges

Originally posted by

AbdurRakib on 17 Jun 2017, 08:10.

Last edited by

Bunuel on 12 Jul 2017, 09:59, edited 2 times in total.

Renamed the topic and edited the question.

Director

Joined: 04 Dec 2015

Posts: 731

Location: India

Concentration: Technology, Strategy

WE: Information Technology (Consulting)

Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =
[#permalink ]

Show Tags
Updated on: 17 Jun 2017, 11:30
AbdurRakib wrote:

Attachment:

2018.OG.05.072.q.png

A. \(\frac{1}{3}\)

B. \(\frac{4}{3}\)

C. 3

D. 4

E. 12

\(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = r(\frac{1}{9}+\frac{1}{12}+\frac{1}{15}+\frac{1}{18})\) \(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = r*\frac{1}{3}(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6})\) \(r*\frac{1}{3} =1\) \(r = 3.\) Answer (C).. _________________

Please Press "+1 Kudos" to appreciate.

Originally posted by

sashiim20 on 17 Jun 2017, 08:16.

Last edited by

sashiim20 on 17 Jun 2017, 11:30, edited 1 time in total.

Senior SC Moderator

Joined: 22 May 2016

Posts: 2212

Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =
[#permalink ]

Show Tags
Updated on: 17 Jun 2017, 11:35
sashiim20 wrote:

AbdurRakib wrote:

Attachment:

2018.OG.05.072.q.png

A. \(\frac{1}{3}\)

B. \(\frac{4}{3}\)

C. 3

D. 4

E. 12

\(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = r(\frac{1}{9}+\frac{1}{12}+\frac{1}{15}+\frac{1}{18})\) \(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = r*\frac{1}{3}(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6})\)\(r*\frac{1}{3} =0\) \(r = 3.\) Answer (C).. _________________

Please Press "+1 Kudos" to appreciate.

sashiim20 - Nice! But I think you have a typo.

\(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = r*\frac{1}{3}(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6})\) - if you divide LHS by

last factor on RHS, I think you get 1.

So in highlighted part,

\(r*\frac{1}{3} =0\) , I think RHS should be 1, not 0. Otherwise you'll get

\(r*\frac{1}{3} * 3 =0 * 3\)

\(r = 0\)

Originally posted by

generis on 17 Jun 2017, 11:26.

Last edited by

generis on 17 Jun 2017, 11:35, edited 1 time in total.

Director

Joined: 04 Dec 2015

Posts: 731

Location: India

Concentration: Technology, Strategy

WE: Information Technology (Consulting)

Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =
[#permalink ]

Show Tags
17 Jun 2017, 11:33

Silly typo mistake. Thank you ... Updated the post.

CEO

Joined: 11 Sep 2015

Posts: 3238

Location: Canada

Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =
[#permalink ]

Show Tags
28 Jun 2017, 06:05
AbdurRakib wrote:

If \((\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})\), then r =

A. \(\frac{1}{3}\)

B. \(\frac{4}{3}\)

C. 3

D. 4

E. 12

Attachment:

2018.OG.05.072.q.png

To solve this question, we need to recognize that there's a 1/3 + 1/4 + 1/5 + 1/6 "hiding" in 1/9 + 1/12 + 1/15 + 1/18

We can reveal this "secret" by factoring 1/3 out of 1/9 + 1/12 + 1/15 + 1/18

We get: 1/9 + 1/12 + 1/15 + 1/18 = (1/3)(1/3 + 1/4 + 1/5 + 1/6)

So.....

Given: 1/3 + 1/4 + 1/5 + 1/6 = r

(1/9 + 1/12 + 1/15 + 1/18) Factor right side to get: 1/3 + 1/4 + 1/5 + 1/6 = (r)

(1/3)(1/3 + 1/4 + 1/5 + 1/6) Divide (1/3 + 1/4 + 1/5 + 1/6) from both sides to get: 1 = (r)(1/3)

Multiply both sides by 3 to get: 3 = r

Answer:

RELATED VIDEO

VIDEO
_________________

Test confidently with gmatprepnow.com

Board of Directors

Status: QA & VA Forum Moderator

Joined: 11 Jun 2011

Posts: 4277

Location: India

GPA: 3.5

WE: Business Development (Commercial Banking)

Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =
[#permalink ]

Show Tags
28 Jun 2017, 07:25

AbdurRakib wrote:

If \((\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})\), then r =

A. \(\frac{1}{3}\)

B. \(\frac{4}{3}\)

C. 3

D. 4

E. 12

Attachment:

2018.OG.05.072.q.png

\((\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})\)

Or, \(\frac{20+15+12+10}{60} = \frac{r(20+15+12+10)}{180}\)

Or, \(20+15+12+10 = \frac{r(20+15+12+10)}{3}\)

Or, \(57*3 = r*57\)

So, \(r = 3\)

Thus, answer will be (C)
_________________

Thanks and Regards Abhishek.... PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )

Target Test Prep Representative

Status: Founder & CEO

Affiliations: Target Test Prep

Joined: 14 Oct 2015

Posts: 4295

Location: United States (CA)

Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =
[#permalink ]

Show Tags
30 Jun 2017, 08:25
AbdurRakib wrote:

If \((\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})\), then r = A. \(\frac{1}{3}\) B. \(\frac{4}{3}\) C. 3 D. 4 E. 12

We can simplify the given expression by multiplying by 180 and we have:

60 + 45 + 36 + 30 = 20r + 15r + 12r + 10r

171 = 57r

r = 3

Alternate Solution:

We should note that each fraction on the left hand side is 3 times the corresponding fraction on the right.

For instance 1/3 is 3 times 1/9, 1/4 is 3 times 1/12, etc.

Thus, r MUST be 3.

Answer: C

_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Intern

Joined: 18 Jun 2017

Posts: 6

Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =
[#permalink ]

Show Tags
22 Sep 2018, 01:35

why cannot we multiply the right side simply by 3 but 1/3? Sorry, cannot understand this moment...

Manager

Joined: 05 Oct 2017

Posts: 57

Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r =
[#permalink ]

Show Tags
10 Oct 2018, 09:37

AbdurRakib wrote:

If \((\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})\), then r =

A. \(\frac{1}{3}\)

B. \(\frac{4}{3}\)

C. 3

D. 4

E. 12

Attachment:

2018.OG.05.072.q.png

\((\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \frac{1}{18})\)

\((\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = r(\frac{1}{3*3} + \frac{1}{3*4} + \frac{1}{3*5} + \frac{1}{3*6})\)

\((\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}) = \frac{r}{3}(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6})\)

\(1=\frac{r}{3}\)

\(r=3\)

C is the Correct answer

_________________

It’s not that I’m so smart, it’s just that I stay with problems longer. -- Albert Einstein

Re: If (1/3 + 1/4 + 1/5 + 1/6) = r(1/9 + 1/12 + 1/15 + 1/18), then r = &nbs
[#permalink ]
10 Oct 2018, 09:37