Last visit was: 18 Nov 2025, 23:53 It is currently 18 Nov 2025, 23:53
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,378
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,378
Kudos: 778,143
 [17]
Kudos
Add Kudos
17
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
yashikaaggarwal
User avatar
Senior Moderator - Masters Forum
Joined: 19 Jan 2020
Last visit: 17 Jul 2025
Posts: 3,086
Own Kudos:
3,102
 [5]
Given Kudos: 1,510
Location: India
GPA: 4
WE:Analyst (Internet and New Media)
Posts: 3,086
Kudos: 3,102
 [5]
3
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 15 Nov 2025
Posts: 11,238
Own Kudos:
43,698
 [2]
Given Kudos: 335
Status:Math and DI Expert
Location: India
Concentration: Human Resources, General Management
GMAT Focus 1: 735 Q90 V89 DI81
Products:
Expert
Expert reply
GMAT Focus 1: 735 Q90 V89 DI81
Posts: 11,238
Kudos: 43,698
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
General Discussion
User avatar
firas92
User avatar
Current Student
Joined: 16 Jan 2019
Last visit: 02 Dec 2024
Posts: 616
Own Kudos:
1,725
 [1]
Given Kudos: 142
Location: India
Concentration: General Management
GMAT 1: 740 Q50 V40
WE:Sales (Other)
Products:
GMAT 1: 740 Q50 V40
Posts: 616
Kudos: 1,725
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If \(x^2-9x+|k|=0\) has two distinct roots then \(9^2-4|k|(1)>0\)

So \(4|k|<81\) or \(|k|<20.25\)

Since \(k\) is an integer, \(|k|≤20\) or \(-20≤k≤20\) which is \(41\) values

Answer is (A)

Posted from my mobile device
User avatar
unraveled
Joined: 07 Mar 2019
Last visit: 10 Apr 2025
Posts: 2,720
Own Kudos:
2,258
 [2]
Given Kudos: 763
Location: India
WE:Sales (Energy)
Posts: 2,720
Kudos: 2,258
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
If \(xˆ2−9x+|k|=0\), where x is a variable and k is a constant, has two distinct roots. How many integer values can k take?

A. 41
B. 40
C. 21
D. 20
E. 10
Here -k ≤ |k| ≤ +k
Root of '\(xˆ2−9x+|k|=0\)' = \(\frac{9 ± \sqrt{81-4|k|}}{2}\)
So, roots will depend on \(\sqrt{81-4|k|}\).

Thus, \(\sqrt{81-4|k|}\) ≥ 0
Solving 81 - 4|k| = 0
\(|k|_{max} = 20\) and \(|k|_{min} = 0\)

Therefore -20 ≤ |k| ≤ 20 i.e. k has 41 integer values.

Answer A.
User avatar
ArunSharma12
Joined: 25 Oct 2015
Last visit: 20 Jul 2022
Posts: 513
Own Kudos:
1,019
 [4]
Given Kudos: 74
Location: India
GMAT 1: 650 Q48 V31
GMAT 2: 720 Q49 V38 (Online)
GPA: 4
Products:
GMAT 2: 720 Q49 V38 (Online)
Posts: 513
Kudos: 1,019
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
If x2−9x+|k|=0, where x is a variable and k is a constant, has two distinct roots. How many integer values can k take?

A. 41
B. 40
C. 21
D. 20
E. 10

real and distinct roots: \(b^2 -4ac > 0\)
\(81 -4|k| > 0\)
\(4|k| < 81\)
\(|k| < 20.25\)
\(-20.25 < k < 20.25\)
number of k's is 41
Ans: A
User avatar
MayankSingh
Joined: 08 Jan 2018
Last visit: 20 Dec 2024
Posts: 289
Own Kudos:
274
 [1]
Given Kudos: 249
Location: India
Concentration: Operations, General Management
GMAT 1: 640 Q48 V27
GMAT 2: 730 Q51 V38
GPA: 3.9
WE:Project Management (Manufacturing)
Products:
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
IMO A

x2−9x+|k|=0
For two distinct roots, D > 0 (a>0)
b^2-4ac >0
9^2- 4*1*|k| >0
|k| < 81/9 = 20.25
|k| <=20
-20 <= K <=20
Total Numbers = 41

Ans . 41
User avatar
exc4libur
Joined: 24 Nov 2016
Last visit: 22 Mar 2022
Posts: 1,684
Own Kudos:
1,447
 [1]
Given Kudos: 607
Location: United States
Posts: 1,684
Kudos: 1,447
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
If x2−9x+|k|=0, where x is a variable and k is a constant, has two distinct roots. How many integer values can k take?

A. 41
B. 40
C. 21
D. 20
E. 10

x^2−9x+|k|=0 has two dif roots
discriminant b^2-4ac>0
(-9)^2-4(1)(|k|)>0
4|k|<81, -20.25<k<20.25
integers bet: 20-(-20)+1=41

Ans (A)
User avatar
NitishJain
User avatar
IESE School Moderator
Joined: 11 Feb 2019
Last visit: 05 Jan 2025
Posts: 266
Own Kudos:
195
 [1]
Given Kudos: 53
Posts: 266
Kudos: 195
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
A.
Given: x^2 - 9x + |k| = 0

b^2-4ac >=0
81-4|k| >=0
20.25>=|k|

-20.25 =< k =< 20.25

==> 41 integer values of k
avatar
krosode20
Joined: 06 Sep 2018
Last visit: 11 Dec 2020
Posts: 2
Given Kudos: 2
Posts: 2
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Should it not be 9 possible integer values. 20, 18, 14, 8, 0, -8, -14, -18, -20 are the possible values of K.
User avatar
naveenban
Joined: 10 Oct 2017
Last visit: 25 Jul 2021
Posts: 66
Own Kudos:
56
 [2]
Given Kudos: 14
Posts: 66
Kudos: 56
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Discriminant, D = 81 – 4|k|
If roots are real, D > 0
81 – 4|k| > 0
4|k| < 81
|k| < 20.25

Hence, –20.25 < k < 20.25
The integer values that k can take are –20, –19, –18 … 0 … 18, 19 and 20.

41 different values

Option A
User avatar
HoneyLemon
User avatar
Stern School Moderator
Joined: 26 May 2020
Last visit: 02 Oct 2023
Posts: 628
Own Kudos:
565
 [1]
Given Kudos: 219
Status:Spirited
Concentration: General Management, Technology
WE:Analyst (Computer Software)
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
A, IMO.

If x^2−9x+|k|=0 , where x is a variable and k is a constant, has two distinct roots.
so 9^2 - 4 |k| >0
81/4 > |K|
20.25 > |K| so -20 <= K <= 20 so K can have 20 + 20 + 1 (for 0) = 41 integer values .
So A .
avatar
Shobhit7
Joined: 01 Feb 2017
Last visit: 29 Apr 2021
Posts: 240
Own Kudos:
426
 [1]
Given Kudos: 148
Posts: 240
Kudos: 426
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
|k|<81/4
|k|<20.25

Min |k|=0
Max |k|=20
Abs k can take 21 values

So, possible values of k: 20+ve, 20-ve, and Zero = 41

Ans A

Posted from my mobile device
User avatar
madgmat2019
Joined: 01 Mar 2019
Last visit: 17 Sep 2021
Posts: 584
Own Kudos:
616
 [1]
Given Kudos: 207
Location: India
Concentration: Strategy, Social Entrepreneurship
GMAT 1: 580 Q48 V21
GPA: 4
Products:
GMAT 1: 580 Q48 V21
Posts: 584
Kudos: 616
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
As they are distinct roots

D>0
b^2-4ac>0
81-4|k|>0
4|k|<81
|k|< 20.25

-20.25 < k < 20.25

total 41 values including 0

OA:A
avatar
somenathd
Joined: 11 Nov 2018
Last visit: 07 Mar 2021
Posts: 2
Given Kudos: 12
Posts: 2
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
b^2-4ac>=0
81-4 *| k |>=0
| k |=<20.25
-20.25<k<20.25

Total number integers within given range should be 41.

Posted from my mobile device
User avatar
sambitspm
Joined: 05 Aug 2019
Last visit: 13 Jan 2022
Posts: 317
Own Kudos:
309
 [1]
Given Kudos: 130
Location: India
Concentration: Leadership, Technology
GMAT 1: 600 Q50 V22
GMAT 2: 670 Q50 V28 (Online)
GPA: 4
GMAT 2: 670 Q50 V28 (Online)
Posts: 317
Kudos: 309
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
x^2-9x+|k| = 0
2 distinct roots

Determinant has to be >0
b^2-4ac > 0

81 - 4|k| > 0
|k|< 81/4

-20<=k<= 20
Hence number is 20+20+ 1 = 41
Hence A
User avatar
monikakumar
Joined: 23 Jan 2020
Last visit: 31 Dec 2021
Posts: 234
Own Kudos:
146
 [1]
Given Kudos: 467
Products:
Posts: 234
Kudos: 146
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If x2−9x+|k|=0, where x is a variable and k is a constant, has two distinct roots. How many integer values can k take?

A. 41
B. 40
C. 21
D. 20
E. 10

2 distinct roots
b^2-4ac >0
81-4|k|>0
-20.25<k<20.25
k can be 20+20+1
41
Ans A
User avatar
Kinshook
User avatar
Major Poster
Joined: 03 Jun 2019
Last visit: 18 Nov 2025
Posts: 5,794
Own Kudos:
Given Kudos: 161
Location: India
GMAT 1: 690 Q50 V34
WE:Engineering (Transportation)
Products:
GMAT 1: 690 Q50 V34
Posts: 5,794
Kudos: 5,509
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Asked: If \(x^2 - 9x + |k| = 0\), where x is a variable and k is a constant, has two distinct roots. How many integer values can k take?

For two distinct roots:-

81 - 4|k| > 0
|k| < 81/4 = 20.25
k = -20,-19,,,,0,1,2,.....19,20: 41 integers values

IMO A
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,582
Own Kudos:
Posts: 38,582
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105378 posts
Tuck School Moderator
805 posts