Last visit was: 18 Nov 2025, 21:06 It is currently 18 Nov 2025, 21:06
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
505-555 Level|   Coordinate Geometry|                        
User avatar
AbdurRakib
Joined: 11 May 2014
Last visit: 08 Nov 2025
Posts: 465
Own Kudos:
Given Kudos: 220
Status:I don't stop when I'm Tired,I stop when I'm done
Location: Bangladesh
Concentration: Finance, Leadership
GPA: 2.81
WE:Business Development (Real Estate)
Posts: 465
Kudos: 42,842
 [155]
13
Kudos
Add Kudos
141
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,265
Own Kudos:
76,983
 [89]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,265
Kudos: 76,983
 [89]
63
Kudos
Add Kudos
25
Bookmarks
Bookmark this Post
User avatar
Senthil1981
Joined: 23 Apr 2015
Last visit: 14 Oct 2021
Posts: 225
Own Kudos:
602
 [22]
Given Kudos: 36
Location: United States
Concentration: General Management, International Business
WE:Engineering (Consulting)
Posts: 225
Kudos: 602
 [22]
16
Kudos
Add Kudos
6
Bookmarks
Bookmark this Post
General Discussion
avatar
mahawarchirag
Joined: 03 Jun 2016
Last visit: 30 Jun 2019
Posts: 8
Own Kudos:
15
 [11]
Given Kudos: 5
Posts: 8
Kudos: 15
 [11]
8
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
The point should be the circumcentre of the triangle and in right angled triangle circumcentre lies on hypotenuse and is mid-point of it . Therefore it can be directly seen that mid point of the hypotenuse will be E.(2,3).
avatar
melin94
Joined: 01 Mar 2017
Last visit: 05 Oct 2019
Posts: 9
Own Kudos:
Given Kudos: 13
Posts: 9
Kudos: 23
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma
AbdurRakib


In the rectangular coordinate system shown above, points O, P, and Q represent the sites of three proposed housing developments. If a fire station can be built at any point in the coordinate system, at which point would it be equidistant from all three developments?
A. (3,1)
B. (1,3)
C. (3,2)
D. (2,2)
E. (2,3)

OG Q 2017(Book Question: 24)

All points equidistant from O and Q lie on the line x = 2 so the fire station should lie on this line.
All points equidistant from O and P lie on the line y = 3 so the fire station should lie on this line too.
These two intersect at (2, 3) and that will be the point equidistant from all 3 points.

Answer (E)

Or

You can think of the question in terms of the perpendicular bisectors of triangle OPQ. Their point of intersection will be equidistant from all three vertices.
Again the perpendicular bisector of OQ will be x = 2 and of OP will be y = 3. They will intersect at (2, 3).
Answer (E)


Is it a general fact, that bisectors of the two legs of a right triangle will cut the hypotenuse exactly in half, in other words, intersect the hypotenuse at its midpoint?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,265
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,265
Kudos: 76,983
Kudos
Add Kudos
Bookmarks
Bookmark this Post
melin94
VeritasPrepKarishma
AbdurRakib


In the rectangular coordinate system shown above, points O, P, and Q represent the sites of three proposed housing developments. If a fire station can be built at any point in the coordinate system, at which point would it be equidistant from all three developments?
A. (3,1)
B. (1,3)
C. (3,2)
D. (2,2)
E. (2,3)

OG Q 2017(Book Question: 24)

All points equidistant from O and Q lie on the line x = 2 so the fire station should lie on this line.
All points equidistant from O and P lie on the line y = 3 so the fire station should lie on this line too.
These two intersect at (2, 3) and that will be the point equidistant from all 3 points.

Answer (E)

Or

You can think of the question in terms of the perpendicular bisectors of triangle OPQ. Their point of intersection will be equidistant from all three vertices.
Again the perpendicular bisector of OQ will be x = 2 and of OP will be y = 3. They will intersect at (2, 3).
Answer (E)


Is it a general fact, that bisectors of the two legs of a right triangle will cut the hypotenuse exactly in half, in other words, intersect the hypotenuse at its midpoint?

Yes, that is correct. The circumcenter of a right triangle (the point of intersection of perpendicular bisectors) will bisect the hypotenuse.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
778,092
 [3]
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,092
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
VeritasPrepKarishma
melin94
VeritasPrepKarishma


All points equidistant from O and Q lie on the line x = 2 so the fire station should lie on this line.
All points equidistant from O and P lie on the line y = 3 so the fire station should lie on this line too.
These two intersect at (2, 3) and that will be the point equidistant from all 3 points.

Answer (E)

Or

You can think of the question in terms of the perpendicular bisectors of triangle OPQ. Their point of intersection will be equidistant from all three vertices.
Again the perpendicular bisector of OQ will be x = 2 and of OP will be y = 3. They will intersect at (2, 3).
Answer (E)


Is it a general fact, that bisectors of the two legs of a right triangle will cut the hypotenuse exactly in half, in other words, intersect the hypotenuse at its midpoint?

Yes, that is correct. The circumcenter of a right triangle (the point of intersection of perpendicular bisectors) will bisect the hypotenuse.

Another way to phrase this property is: in a right triangle, the median drawn to the hypotenuse has the measure half the hypotenuse.
avatar
sadikabid27
Joined: 10 Sep 2014
Last visit: 23 Jul 2021
Posts: 59
Own Kudos:
Given Kudos: 417
Location: Bangladesh
GPA: 3.5
WE:Project Management (Manufacturing)
Posts: 59
Kudos: 32
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I followed the midpoint property of co-ordinate geometry and got the same result. Is there any problem ? Bunuel, VeritasPrepKarishma, chetan2u, JeffTargetTestPrep, GMATPrepNow.
User avatar
raks85
Joined: 28 Oct 2017
Last visit: 30 Oct 2023
Posts: 36
Own Kudos:
Given Kudos: 11
Location: India
GMAT 1: 640 Q47 V32
GMAT 2: 710 Q49 V38
Products:
GMAT 2: 710 Q49 V38
Posts: 36
Kudos: 13
Kudos
Add Kudos
Bookmarks
Bookmark this Post
All three points would be on the periphery of a circle while the fire station would be at the center.
So, (X-a)^2+(Y-b)^2=C^2, where (a,b) are the three points.
Solving three equations we get (X,Y) as (2,3).
avatar
sunngupt11
Joined: 01 May 2017
Last visit: 12 Aug 2023
Posts: 24
Own Kudos:
Given Kudos: 86
Posts: 24
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Use Centroid of Triangle formula.

Centroid of Triangle is (x1+x2+x3)/3, (y1+y2+y3)/3

here, X and Y are points of triangle.
User avatar
Probus
Joined: 10 Apr 2018
Last visit: 22 May 2020
Posts: 180
Own Kudos:
530
 [1]
Given Kudos: 115
Location: United States (NC)
Posts: 180
Kudos: 530
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sunngupt11
Use Centroid of Triangle formula.

Centroid of Triangle is (x1+x2+x3)/3, (y1+y2+y3)/3

here, X and Y are points of triangle.


Well sunngupt11,

If you use centroid formula you get\(\frac {4}{3}\), \(\frac {6}{3}\)

Also centroid of triangle lies inside the triangle. If you look at the responses above many have solved this using circumradius or perpendicular bisectors of triangle.

Now the three perpendicular bisectors of triangle can meet inside the triangle or outside the triangle .

I guess what must have confused you is that centroid divides the media in a ratio of 2:1. but that dosen't mean all the medians of a triangle will be of equal length.
User avatar
kapstone1996
Joined: 12 Apr 2017
Last visit: 24 May 2022
Posts: 106
Own Kudos:
63
 [4]
Given Kudos: 33
Location: United States
Concentration: Finance, Operations
GPA: 3.1
Posts: 106
Kudos: 63
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
knowing that it is a right triangle, is using the midpoint formula suitable?

(X1 + x2)/ 2, (y1+y2)/2

(0 + 4) / 2 , (0 + 6) / 2

2,3
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,265
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,265
Kudos: 76,983
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasKarishma
AbdurRakib


In the rectangular coordinate system shown above, points O, P, and Q represent the sites of three proposed housing developments. If a fire station can be built at any point in the coordinate system, at which point would it be equidistant from all three developments?
A. (3,1)
B. (1,3)
C. (3,2)
D. (2,2)
E. (2,3)

OG Q 2017(Book Question: 24)

All points equidistant from O and Q lie on the line x = 2 so the fire station should lie on this line.
All points equidistant from O and P lie on the line y = 3 so the fire station should lie on this line too.
These two intersect at (2, 3) and that will be the point equidistant from all 3 points.

Answer (E)

Or

You can think of the question in terms of the perpendicular bisectors of triangle OPQ. Their point of intersection will be equidistant from all three vertices.
Again the perpendicular bisector of OQ will be x = 2 and of OP will be y = 3. They will intersect at (2, 3).
Answer (E)

Responding to a pm:
Quote:

Let the point be A(x,y)

Considering that it is equidistant from O, P, Q,

Distance(OA) = Distance(PA) = Distance (QA)

x^2+y^2= x^2+ (y-6)^2=(x-4)^2+y^2

Solving the above, gives

(y-6)^2= (x-4)^2

Option B (3,1) satisfies the above.

Not sure how you get (y-6)^2= (x-4)^2

On solving, I get y^2 = (y - 6)^2 which gives y = 3
and x^2 = (x - 4)^2 which gives x = 2
User avatar
satya2029
Joined: 10 Dec 2017
Last visit: 29 Sep 2025
Posts: 231
Own Kudos:
Given Kudos: 138
Location: India
Posts: 231
Kudos: 249
Kudos
Add Kudos
Bookmarks
Bookmark this Post
AbdurRakib


In the rectangular coordinate system shown above, points O, P, and Q represent the sites of three proposed housing developments. If a fire station can be built at any point in the coordinate system, at which point would it be equidistant from all three developments?
A. (3,1)
B. (1,3)
C. (3,2)
D. (2,2)
E. (2,3)

OG Q 2017(Book Question: 24)


Attachment:
24xj68n.jpg
Point will be equidistant from all three developments if it lies on the perpendicular bisector of line joining PQ i.e, MID POINT OF PQ(2,3) as per the given options.
User avatar
Farina
Joined: 21 Aug 2019
Last visit: 13 Oct 2020
Posts: 100
Own Kudos:
Given Kudos: 352
Posts: 100
Kudos: 43
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasKarishma
AbdurRakib


In the rectangular coordinate system shown above, points O, P, and Q represent the sites of three proposed housing developments. If a fire station can be built at any point in the coordinate system, at which point would it be equidistant from all three developments?
A. (3,1)
B. (1,3)
C. (3,2)
D. (2,2)
E. (2,3)

OG Q 2017(Book Question: 24)

All points equidistant from O and Q lie on the line x = 2 so the fire station should lie on this line.
All points equidistant from O and P lie on the line y = 3 so the fire station should lie on this line too.
These two intersect at (2, 3) and that will be the point equidistant from all 3 points.

Answer (E)

Or

You can think of the question in terms of the perpendicular bisectors of triangle OPQ. Their point of intersection will be equidistant from all three vertices.
Again the perpendicular bisector of OQ will be x = 2 and of OP will be y = 3. They will intersect at (2, 3).
Answer (E)

Can we find mid point?

(0+4)/2 and (6+0)/2
avatar
Pksri
Joined: 04 Mar 2020
Last visit: 04 Feb 2021
Posts: 8
Own Kudos:
Given Kudos: 27
Location: Finland
Concentration: Strategy, Sustainability
GPA: 4
WE:Research (Energy)
Posts: 8
Kudos: 12
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Can we approach the problem like below?

Since it is asked us to find a point in the coordinate system, which must be equal distances to the other points, can't we use the distance between two points or difference between 2 points? In differences, the only right answer will be E.
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 18 Nov 2025
Posts: 21,712
Own Kudos:
26,991
 [1]
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,712
Kudos: 26,991
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
AbdurRakib


In the rectangular coordinate system shown above, points O, P, and Q represent the sites of three proposed housing developments. If a fire station can be built at any point in the coordinate system, at which point would it be equidistant from all three developments?

A. (3,1)
B. (1,3)
C. (3,2)
D. (2,2)
E. (2,3)

OG Q 2017(Book Question: 24)


Solution:

By looking at the graph, the easiest way is to take the midpoint of PQ (since it is already equidistant to P and Q) as the locations of the fire station. Let it be F. So F = ((0 + 4)/2, (6 + 0)/2) = (2, 3). We see that this point is also equidistant from O = (0, 0). Therefore, (2, 3) must be the location where the fire station should be built.

Alternate Solution:

Recall that the set of points equidistant from two given points is a line that passes through the midpoint of the two given points and that is perpendicular to the line passing through the two points.

Using this fact, we see that every point on the line y = 3 is equidistant to P and O (since the midpoint of P and O is (0, 3)), and every point on the line x = 2 is equidistant to O and Q (since the midpoint of O and Q is (2, 0)). The intersection of the lines y = 3 and x = 2 is the point (2, 3), and this point is equidistant to P, O and Q.

Answer: E
User avatar
Basshead
Joined: 09 Jan 2020
Last visit: 07 Feb 2024
Posts: 925
Own Kudos:
Given Kudos: 432
Location: United States
Posts: 925
Kudos: 302
Kudos
Add Kudos
Bookmarks
Bookmark this Post
We have two coordinates located at (0,6) and (4,0). What point is equidistant?

What's the midpoint of 0 and 4? 2. The x-coordinate will be 2.

What's the midpoint of 6 and 0? 3. The y-coordinate will be 3.

Thus, we have (2,3). Answer is E.
User avatar
Hovkial
Joined: 23 Apr 2019
Last visit: 24 Nov 2022
Posts: 803
Own Kudos:
Given Kudos: 202
Status:PhD trained. Education research, management.
Posts: 803
Kudos: 2,409
Kudos
Add Kudos
Bookmarks
Bookmark this Post
OFFICIAL GMAT EXPLANATION

Geometry Coordinate geometry

Any point equidistant from the points (0,0) and (4,0) must lie on the perpendicular bisector of the segment with endpoints (0,0) and (4,0), which is the line with equation x = 2. Any point equidistant from the points (0,0) and (0,6) must lie on the perpendicular bisector of the segment with endpoints (0,0) and (0,6), which is the line with equation y = 3. Therefore, the point that is equidistant from (0,0), (4,0), and (0,6) must lie on both of the lines x = 2 and y = 3, which is the point (2,3).

Alternatively, let (x, y) be the point equidistant from (0,0), (4,0), and (0,6). Since the distance between (x, y) and (0,0) is equal to the distance between (x, y) and (4,0), it follows from the distance formula that √x^2 + y^2 = √(x−4)^2 + y^2. Squaring both sides gives x^2 + y^2 = (x − 4)^2 + y^2. Subtracting y^2 from both sides of the last equation and then expanding the right side gives x^2 = x^2 − 8x + 16, or 0 = −8x + 16, or x = 2. Also, since the distance between (x, y) and (0,0) is equal to the distance between (x, y) and (0,6), it follows from the distance formula that √x^2 + y^2 = √x^2 + (y−6)^2. Squaring both sides of the last equation gives x^2 + y^2 = x^2 + (y − 6)^2. Subtracting x^2 from both sides and then expanding the right side gives y^2 = y^2 − 12y + 36, or 0 = −12y + 36, or y = 3.
avatar
sayeed mozomder
Joined: 28 Sep 2017
Last visit: 20 Sep 2025
Posts: 1
Given Kudos: 413
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
it can be solved by using midpoint formula: (x1+x2)/2; (y1+y2)/2
(4+0)/2 ;(6+0)/2
Ans: 2,3
 1   2   
Moderators:
Math Expert
105355 posts
Tuck School Moderator
805 posts