Last visit was: 11 Dec 2024, 17:40 It is currently 11 Dec 2024, 17:40
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
daviesj
Joined: 23 Aug 2012
Last visit: 21 Mar 2023
Posts: 115
Own Kudos:
1,272
 [12]
Given Kudos: 35
Status:Never ever give up on yourself.Period.
Location: India
Concentration: Finance, Human Resources
GMAT 1: 570 Q47 V21
GMAT 2: 690 Q50 V33
GPA: 3.5
WE:Information Technology (Finance: Investment Banking)
GMAT 2: 690 Q50 V33
Posts: 115
Kudos: 1,272
 [12]
2
Kudos
Add Kudos
9
Bookmarks
Bookmark this Post
User avatar
BrushMyQuant
Joined: 05 Apr 2011
Last visit: 09 Dec 2024
Posts: 2,044
Own Kudos:
2,297
 [3]
Given Kudos: 100
Status:Tutor - BrushMyQuant
Location: India
Concentration: Finance, Marketing
Schools: XLRI (A)
GMAT 1: 700 Q51 V31
GPA: 3
WE:Information Technology (Computer Software)
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Schools: XLRI (A)
GMAT 1: 700 Q51 V31
Posts: 2,044
Kudos: 2,297
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Marcab
Joined: 03 Feb 2011
Last visit: 22 Jan 2021
Posts: 856
Own Kudos:
Given Kudos: 221
Status:Retaking after 7 years
Location: United States (NY)
Concentration: Finance, Economics
GMAT 1: 720 Q49 V39
GPA: 3.75
GMAT 1: 720 Q49 V39
Posts: 856
Kudos: 4,666
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 11 Dec 2024
Posts: 97,815
Own Kudos:
685,149
 [4]
Given Kudos: 88,242
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,815
Kudos: 685,149
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
In the sequence \(g_n\) defined for all positive integer values of n, \(g_1 = g_2 = 1\) and, for n ≥ 3, \(g_n = g_{n–1} + 2^{n-3}\). If the function \(ψ(g_i)\) equals the sum of the terms \(g_1\), \(g_2\), …, \(g_i\) , what is \(\frac{ψ(g_{16})}{ψ(g_{15})}\)

(A) \(g_3\)

(B) \(g_8\)

(C) \(ψ(g_8)\)

(D) \(ψ(g_{16}) - ψ(g_{15})\)

(E) \(\frac{g_{16}}{2}\)


MANHATTAN GMAT OFFICIAL SOLUTION:

We begin by listing some values of gn, in order to get a sense for how gn progresses:
\(g_1 = 1\)

\(g_2 = 1\)

\(g_3 = g_2 + 2^0 = 1 + 1 = 2 = 2^1\)

\(g_4 = g_3 + 2^1 = 2 + 2 = 4 = 2^2\)

\(g_5 = g_4 + 2^2 = 4 + 4 = 8 = 2^3\)

\(g_6 = g_5 + 2^3 = 8 + 8 = 16 = 2^4\)

We can see that for n ≥ 3, \(g_n = 2^{n–2}\).

Let us now look for a pattern in the sums defined as (gn):
\(ψ(g_3) = g_1 + g_2 + g_3 + = 1 + 1 + 2 = 4 = 2^2\)

\(ψ(g_4) = (g_1 + g_2 + g_3) + g_4 = ψ(g_3) + g_4 = 4 + 4 = 8 = 2^3\)

\(ψ(g_5) = (g_1 + g_2 + g_3 + g_4) + g_5 = ψ(g_4)+ g_5 = 8 + 8 = 16 = 2^4\)

Each value is double the previous value: \(ψ(g_n) = 2 * ψ(g_{n-1})\). This means that:
\(\frac{ψ(g_{16})}{ψ(g_{15})}=\frac{2*ψ(g_{15})}{ψ(g_{15})}=2\)

Now all we need to do is scan the answer choices to find an expression that equals 2. We have already discovered that g3 = 2, so we can select g3 as the answer.

The correct answer is A.

OPEN DISCUSSION OF THIS QUESTION IS HERE: in-the-sequence-gn-defined-for-all-positive-integer-values-of-n-g1-199690.html
Moderator:
Math Expert
97815 posts