GMATPrepNow
In the x-y coordinate plane, line k passes through the point (5, -4) and has a negative x-intercept. Which of the following COULD be the equation of line k?
i) y = -0.4x - 2
ii) y = 2 - 1.2x
iii) y = -0.7x - 1.5
A) i only
B) ii only
C) iii only
D) i & ii only
E) i & iii only
Reminder (to my students) / Suggestion (to the general reader):
1. One property at a time, till the end. Then the other. ("Don´t let your brain dance!")
2. Start with the easier checking property (or the one you feel more comfortable).
Indifferent? Start with the first.
\(?\,\,\left( 1 \right)\,\,\,\,:\,\,\,\,\left( {5, - 4} \right)\,\,\mathop \in \limits^? \,\,\,{\text{line}}\,\,\)
\(\left( i \right)\,\,\, - 4\,\,\mathop = \limits^? \,\, - \frac{2}{5}\left( 5 \right) - 2\,\,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\)
\(\left( {ii} \right)\,\,\, - 4\,\,\mathop = \limits^? \,\, - \frac{6}{5}\left( 5 \right) + 2\,\,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\)
\(\left( {iii} \right)\,\,\, - 4\,\,\mathop = \limits^? \,\, - \frac{7}{{10}}\left( 5 \right) - \frac{3}{2}\,\,\,\,\,\,\left\langle {{\text{NO}}} \right\rangle \,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,{\text{Refute}}\,\,\left( C \right),\,\,\left( E \right)\)
\(?\,\,\left( 2 \right)\,\,\,\,:\,\,\,\,{\text{line}}\,\,x - {\text{intercept}}\,\,\,\mathop < \limits^? \,\,0\)
\(\left( i \right)\,\,0\, = \,\, - \frac{2}{5}\left( x \right) - 2\,\,\,\,\,\mathop \Rightarrow \limits^? \,\,\,x < \,\,0\,\,\,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,{\text{Refute}}\,\,\left( B \right)\)
\(\left( {ii} \right)\,\,0\, = \,\, - \frac{6}{5}\left( x \right) + 2\,\,\,\,\,\mathop \Rightarrow \limits^? \,\,\,x < \,\,0\,\,\,\,\,\,\,\left\langle {{\text{NO}}} \right\rangle \,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,{\text{Refute}}\,\,\left( D \right)\)
The correct answer is (A).
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.