Bunuel
In the XY-plane, are the points with their coordinates (a, b) and (c, d) equidistant from the origin?
(1) a + b = 2
(2) c = 1 − a and d = 1 − b
\({a^2} + {b^2}\,\,\mathop = \limits^? \,\,{c^2} + {d^2}\)
\(\left( 1 \right)\,\,a + b = 2\,\,\,\left\{ \matrix{\\
\,{\rm{Take}}\,\,\left( {a,b} \right) = \left( {1,1} \right)\,\,\,{\rm{and}}\,\,\,\left( {c,d} \right) = \left( {1,1} \right)\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\rm{Yes}}} \right\rangle \hfill \cr \\
\,{\rm{Take}}\,\,\left( {a,b} \right) = \left( {1,1} \right)\,\,\,{\rm{and}}\,\,\,\left( {c,d} \right) = \left( {0,0} \right)\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\rm{No}}} \right\rangle \hfill \cr} \right.\)
\(\left( 2 \right)\,\,\,\left\{ \matrix{\\
\,a + c = 1 \hfill \cr \\
\,b + d = 1 \hfill \cr} \right.\,\,\,;\,\,\,\,\left\{ \matrix{\\
\,{\rm{Take}}\,\,\left( {a,b} \right) = \left( {0.5,0.5} \right)\,\,\,{\rm{and}}\,\,\,\left( {c,d} \right) = \left( {0.5,0.5} \right)\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\rm{Yes}}} \right\rangle \hfill \cr \\
\,\left( {{\mathop{\rm Re}\nolimits} } \right){\rm{Take}}\,\,\left( {a,b} \right) = \left( {1,1} \right)\,\,\,{\rm{and}}\,\,\,\left( {c,d} \right) = \left( {0,0} \right)\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\rm{No}}} \right\rangle \hfill \cr} \right.\)
\(\left( {1 + 2} \right)\,\,\left\{ \matrix{\\
\,a + c = 1 \hfill \cr \\
\,b + d = 1 \hfill \cr} \right.\,\,\,\,\mathop \Rightarrow \limits^ + \,\,\,a + b + c + d = 2\,\,\,\,\mathop \Rightarrow \limits^{\left( 1 \right)} \,\,\,c + d = 0\)
\(\left\{ {\left. \matrix{\\
\,{a^2} + {b^2} = {\left( {2 - b} \right)^2} + {b^2} = 4 - 4b + 2{b^2} \hfill \cr \\
\,{c^2} + {d^2} = {\left( { - d} \right)^2} + {d^2} = 2{d^2} = 2{\left( {1 - b} \right)^2} = 2 - 4b + 2{b^2} \hfill \cr} \right\}\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{No}}} \right\rangle } \right.\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.