goodyear2013 wrote:

Is |a| > |b|?

(1) b < -a

(2) a < 0

We need to determine whether |a| > |b|.

Statement One Alone:b < -a

We can rearrange the inequality in statement one to read:

b + a < 0

We do not have enough information to determine whether |a| > |b|.

For instance, if a = -3 and b = 2, |a| IS greater than |b|. However, if a = -1 and b = -2, |a| IS NOT greater than |b|. Statement one alone is not sufficient to answer the question. We can eliminate answer choices A and D.

Statement Two Alone:a < 0

Just knowing that a < 0 is not enough information to answer the question. Similar to statement one, if a = -3 and b = 2, |a| IS greater than |b|; however, if a = -1 and b = -2, |a| IS NOT greater than |b|. Statement two alone is not sufficient to answer the question. We can eliminate answer choice B.

Statements One and Two Together:From statements one and two we know that b + a < 0 and a < 0. However, we still do not have enough information to determine whether |a| > |b|. As mentioned above, if a = -3 and b = 2, |a| IS greater than |b|; however, if a = -1 and b = -2, |a| IS NOT greater than |b|.

Answer: E

_________________

Jeffery Miller

Head of GMAT Instruction

GMAT Quant Self-Study Course

500+ lessons 3000+ practice problems 800+ HD solutions