fskilnik
GMATH practice exercise (Quant Class 20)
Is the x-intercept of the non-horizontal line L negative?
(1) The slope of line L is equal to the y-intercept of line L.
(2) The slope of line L is positive.
\(c = {\left( {x - {\rm{intercept}}} \right)_{\rm{L}}}\,\,\mathop {\rm{ < }}\limits^? \,\,{\rm{0}}\)
\(L\,\,\,:\,\,\,{\rm{vertical}}\,\,{\rm{or}}\,\,{\rm{non - vertical}}\,\,{\rm{with}}\,\,m = {\rm{slop}}{{\rm{e}}_{\rm{L}}} \ne 0\)
\(\left( 1 \right)\,\,\,L\,\,{\rm{non - vertical}}\,\,{\rm{and}}\,\,L\,\,:\,\,\,y = mx + m = m\left( {x + 1} \right)\)
\(?\,\,\,:\,\,\,0 = m\left( {c + 1} \right)\,\,\,\,\,\mathop \Rightarrow \limits^{m\, \ne \,\,0} \,\,\,\,c + 1 = 0\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{YES}}} \right\rangle\)
\(\left( 2 \right)\,\,\,{\rm{INSUFF}}.\,\,\,\,\left( {{\rm{trivial}}\,\,{\rm{geometric}}\,\,{\rm{bifurcation}}} \right)\)
The correct answer is (A).
We follow the notations and rationale taught in the
GMATH method.
Regards,
Fabio.