Bunuel
Tough and Tricky questions: Word Problems.
Jim and Heather are in a line to purchase tickets for a music concert. How many people are in the line?
(1) There are 32 people in front of Jim and 40 people behind Heather.
(2) There are 13 people between Jim and Heather.
Kudos for a correct solution. OFFICIAL SOLUTION:Statement (1) does not tell you anything since you do not know whether Jim is in front of Heather or behind Heather and you don't know how many people are between them.
Statement (2) is not sufficient because you can't tell how many people are in front or behind Jim and Heather.
If you take statements (1) and (2) together: There are 2 possibilities: if Jim is farther ahead, then there are 32 people in front of him, plus the 13 between him and Heather, plus the 40 after her, plus Jim and Heather themselves, for a total of 87 people in line. But suppose that Heather is closer to the front than Jim. In this case, with Heather closer to the front and 13 people between her and Jim, there must still be 32 people in front of Jim and 40 behind Heather. Since Heather and the intermediate 13 people are ahead of Jim, there must be 32 – (13 + 1) people, or 18 people, ahead of Heather. Since Jim and the intermediate 13 people are behind Heather, there must be 40 – (13 + 1) people, or 26 people, behind Jim. So, we have 18 people in front of Heather, then Heather herself, then the intermediate 13 people, then Jim himself, then the 26 people behind Jim, for a total of 59 people. Thus, even together the statements don't give us enough information, and the answer is (E).