Last visit was: 14 Dec 2024, 23:31 It is currently 14 Dec 2024, 23:31
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Praetorian
Joined: 15 Aug 2003
Last visit: 27 Dec 2017
Posts: 2,876
Own Kudos:
Given Kudos: 781
Posts: 2,876
Kudos: 1,669
Kudos
Add Kudos
Bookmarks
Bookmark this Post
avatar
Vicky
Joined: 22 Aug 2003
Last visit: 31 Aug 2006
Posts: 170
Own Kudos:
Location: Bangalore
Posts: 170
Kudos: 193
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Praetorian
Joined: 15 Aug 2003
Last visit: 27 Dec 2017
Posts: 2,876
Own Kudos:
Given Kudos: 781
Posts: 2,876
Kudos: 1,669
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
AkamaiBrah
User avatar
GMAT Instructor
Joined: 07 Jul 2003
Last visit: 24 Jun 2009
Posts: 392
Own Kudos:
Location: New York NY 10024
Concentration: Finance
Schools:Haas, MFE; Anderson, MBA; USC, MSEE
Posts: 392
Kudos: 496
Kudos
Add Kudos
Bookmarks
Bookmark this Post
praetorian123
One circular stage....there are seven positions in it, one of them is
marked by red color and one of seven people will stand on these
positions, how many arrangements are possible?

Is it 6! / 7 ?

please explain your answer.


Vicky is correct. By marking one of the position, you eliminate the rotational symmetry of the problem, hence, the answer is simply 7!

Another way of looking at it is:

There are 7 possible people that can stand on the red spot. For each one of those, we can arrange the other 6 in 6! different ways. Hence, there are 7 x 6! = 7! ways.

Clockwise and counterwise certainly do matter -- the same way left-to-right and right-to-left would in a row. HOWEVER, if we were talking about something we could pick up and flip over, say, a bracelet or hula hoop, they we would have "mirror image" symmetry and the answer would be 7!/2.
avatar
stolyar
Joined: 03 Feb 2003
Last visit: 06 May 2014
Posts: 1,012
Own Kudos:
Posts: 1,012
Kudos: 1,753
Kudos
Add Kudos
Bookmarks
Bookmark this Post
praetorian123
One circular stage....there are seven positions in it, one of them is
marked by red color and one of seven people will stand on these
positions, how many arrangements are possible?

Is it 6! / 7 ?

please explain your answer.


As far as I understood the initial verbiage, ONE out of seven people will stand on the positions. ONE means 1, the only.
We have to take one out of seven and arrange him on the stage.
7*7=49, no?
User avatar
amarsesh
Joined: 29 Aug 2003
Last visit: 08 Jul 2004
Posts: 23
Own Kudos:
Location: Detroit, MI
Posts: 23
Kudos: 6
Kudos
Add Kudos
Bookmarks
Bookmark this Post
stolyar
praetorian123
One circular stage....there are seven positions in it, one of them is
marked by red color and one of seven people will stand on these
positions, how many arrangements are possible?

Is it 6! / 7 ?

please explain your answer.

As far as I understood the initial verbiage, ONE out of seven people will stand on the positions. ONE means 1, the only.
We have to take one out of seven and arrange him on the stage.
7*7=49, no?


There are 7 ways to pick the person to be put on the red spot and 6! ways to put the remaining 6 people. So, the answer would be 7 * 6! = 7! if direction does not matter and 7!/2 if it does.
User avatar
Jasdeep
Joined: 17 Sep 2003
Last visit: 04 Feb 2010
Posts: 20
Location: Mumbai,India
Posts: 20
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
With the red mark, one position gets fixed where 7 persons can be arranged in 7 ways.
For rest of the 6 places,distinct items can be arranged in 6! ways. looks perfect.

[/code]
avatar
stolyar
Joined: 03 Feb 2003
Last visit: 06 May 2014
Posts: 1,012
Own Kudos:
Posts: 1,012
Kudos: 1,753
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I understand this solution, believe me. There is absolutely no need to post it twice. But this solution is OK for the following verbiage: One circular stage....there are seven positions in it, one of them is
marked by red color and seven people will stand on these
positions, how many arrangements are possible?

see a difference?



Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Where to now? Join ongoing discussions on thousands of quality questions in our Problem Solving (PS) Forum
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.
Thank you for understanding, and happy exploring!
Moderators:
Math Expert
97877 posts
Senior Moderator - Masters Forum
3116 posts