It is currently 25 Feb 2018, 19:38

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

The length of a certain rectangle is 4 inches longer than its width.

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43917
The length of a certain rectangle is 4 inches longer than its width. [#permalink]

Show Tags

New post 09 Sep 2015, 23:27
Expert's post
4
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

72% (02:13) correct 28% (03:03) wrong based on 117 sessions

HideShow timer Statistics

The length of a certain rectangle is 4 inches longer than its width. If the area of the rectangle is 221 square inches, then the length of the rectangle’s diagonal, in inches, is

(A) between 19 and 20
(B) between 20 and 21
(C) between 21 and 22
(D) between 22 and 23
(E) between 23 and 24


Kudos for a correct solution.
[Reveal] Spoiler: OA

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

1 KUDOS received
Manager
Manager
avatar
Joined: 07 Apr 2015
Posts: 179
The length of a certain rectangle is 4 inches longer than its width. [#permalink]

Show Tags

New post 10 Sep 2015, 00:38
1
This post received
KUDOS
l = w+4

\(l*w = 221\)
\(w+4*w = 221\)
\(w^2+4w-221=0\)

\((w+17)(w-13)\)

w is -17 or 13, only 13 is possible.
Hence L = 13+4 = 17

\(13^2+17^2 = x^2\)
\(169+289 = x^2\)
\(458 = x^2\)

20*20 is 400, therefore x has to be greater 20. 22*22 (just tried that one) is 484, therefore it has to be below that. Hence C

(P.S.: No Idea how to do that task in <2 minutes, to much calculation involved)
2 KUDOS received
Manager
Manager
avatar
Joined: 10 Aug 2015
Posts: 103
GMAT ToolKit User
The length of a certain rectangle is 4 inches longer than its width. [#permalink]

Show Tags

New post 10 Sep 2015, 03:51
2
This post received
KUDOS
Solution: a(a+4) = 221. 221 is near to 15^2. So, look for two no. around 15 whose product will have 1 in its uits place.You dont have to look far, its 13 and 17.
Length required = sqrt(13^2 + 17^2) = sqrt(169 + 289) = sqrt(458)
21^2 = 441 and 22^2 = 484.

Option C
Manager
Manager
avatar
Joined: 29 Jul 2015
Posts: 159
GMAT ToolKit User
Re: The length of a certain rectangle is 4 inches longer than its width. [#permalink]

Show Tags

New post 10 Sep 2015, 06:10
Bunuel wrote:
The length of a certain rectangle is 4 inches longer than its width. If the area of the rectangle is 221 square inches, then the length of the rectangle’s diagonal, in inches, is

(A) between 19 and 20
(B) between 20 and 21
(C) between 21 and 22
(D) between 22 and 23
(E) between 23 and 24


Kudos for a correct solution.


Let the width of the rectangle be x,then the length will be x+4.
The area is 221.
so,
x(x+4)=221
or \(x^2+4x-221=0\)
or \((x-13)(x+17)=0\)
or x=13

width is 13 so the lenght will 13+4= 17
So, The diagonal of the rectangle will be
\(\sqrt{13^2 + 17^2}\) = \(\sqrt{458}\)

Clearly, the sum lies between \(21^2\) i.e 441 and \(22^2\) i.e 484

Answer:- C
1 KUDOS received
Intern
Intern
avatar
Joined: 20 Apr 2015
Posts: 10
Re: The length of a certain rectangle is 4 inches longer than its width. [#permalink]

Show Tags

New post 10 Sep 2015, 23:34
1
This post received
KUDOS
L = 17, B = 13
169+289 = 458 is between 441 and 484 hence between 21 and 22. answer C
Director
Director
avatar
G
Joined: 21 May 2013
Posts: 581
Re: The length of a certain rectangle is 4 inches longer than its width. [#permalink]

Show Tags

New post 11 Sep 2015, 02:01
Bunuel wrote:
The length of a certain rectangle is 4 inches longer than its width. If the area of the rectangle is 221 square inches, then the length of the rectangle’s diagonal, in inches, is

(A) between 19 and 20
(B) between 20 and 21
(C) between 21 and 22
(D) between 22 and 23
(E) between 23 and 24


Kudos for a correct solution.


Width=x, Length=x+4
x*x+4=221
Solving for x, x=13,x+4=17
Therefore using pythagoras theorem, Diagonal^2=169+289=458
Diagonal=More than 21 but less than 22
Answer C
Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43917
Re: The length of a certain rectangle is 4 inches longer than its width. [#permalink]

Show Tags

New post 13 Sep 2015, 08:00
1
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
Bunuel wrote:
The length of a certain rectangle is 4 inches longer than its width. If the area of the rectangle is 221 square inches, then the length of the rectangle’s diagonal, in inches, is

(A) between 19 and 20
(B) between 20 and 21
(C) between 21 and 22
(D) between 22 and 23
(E) between 23 and 24


Kudos for a correct solution.


MANHATTAN GMAT OFFICIAL SOLUTION:

First, set up an equation for the area of the rectangle. If x is the width, then we have

x(x + 4) = 221

Note that if we put this into standard quadratic form and then try to factor, we wind up back where we started, in some sense: we are looking for two numbers that multiply to 221 and that differ by 4.

x^2 + 4x – 221 = 0

Beyond pure trial and error, we can look for nearby squares. 221 is nearly 225, which equals 15^2. So we might try numbers near 15. As it turns out, 221 = 13 × 17. We might even get there by noticing a difference of squares:

221 = 225 – 4 = 15^2 – 2^2 = (15 – 2)(15 + 2) = 13 × 17.

As a last resort, we could always use the quadratic formula, which gets us the roots of the equation as well.

Now, the diagonal of the rectangle will be given by the Pythagorean Theorem:

d^2 = 13^2 + 17^2
= 169 + 289
= 458.

The square root of 458 is definitely larger than 20, since 20^2 = 400. Going up, we can compute 21^2 = 441 < 458, whereas 22^2 = 484 > 458. So the length of the diagonal must be between 21 and 22.

The correct answer is C.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 13746
Premium Member
Re: The length of a certain rectangle is 4 inches longer than its width. [#permalink]

Show Tags

New post 16 May 2017, 19:19
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Intern
Intern
avatar
S
Joined: 05 Dec 2016
Posts: 7
Re: The length of a certain rectangle is 4 inches longer than its width. [#permalink]

Show Tags

New post 16 May 2017, 20:11
SHORTER METHOD

Let the dimensions be L & B
Given: L - B= 4 & L.B= 221
Length of diagonal = (L^2 + B^2)^(1/2)

L^2 + B^2= √{(L-B)^2 + 2L.B}=√{(4)^2 + 2.(221)}= √{16 + 442}= √(458)

Now 21^2=441 & 22^2= 484.

Hence 21< Diagonal length< 22. Hence C
Manager
Manager
User avatar
G
Joined: 09 Jan 2016
Posts: 133
GPA: 3.4
WE: General Management (Human Resources)
Re: The length of a certain rectangle is 4 inches longer than its width. [#permalink]

Show Tags

New post 17 May 2017, 10:45
Bunuel wrote:
The length of a certain rectangle is 4 inches longer than its width. If the area of the rectangle is 221 square inches, then the length of the rectangle’s diagonal, in inches, is

(A) between 19 and 20
(B) between 20 and 21
(C) between 21 and 22
(D) between 22 and 23
(E) between 23 and 24


Kudos for a correct solution.

W* (w+4)= 221

221 has four factors 1, 13, 17,and liself

W= 13
length= 13 +4 = 17

According to , Pythagorean theoram
C^2= a^2 + b^2
C^2= 13^2+ 17^2

thus Diagonal could be \sqrt{458}
and could be Between 21 and 22.
Re: The length of a certain rectangle is 4 inches longer than its width.   [#permalink] 17 May 2017, 10:45
Display posts from previous: Sort by

The length of a certain rectangle is 4 inches longer than its width.

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.