Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Have you ever wondered how to score a PERFECT 805 on the GMAT? Meet Julia, a banking professional who used the Target Test Prep course to achieve this incredible feat. Julia's story is nothing short of an inspiration.
Think a 100% GMAT Verbal score is out of your reach? Target Test Prep will make you think again! Our course uses techniques such as topical study and spaced repetition to maximize knowledge retention and make studying simple and fun.
GMAT Club 12 Days of Christmas is a 4th Annual GMAT Club Winter Competition based on solving questions. This is the Winter GMAT competition on GMAT Club with an amazing opportunity to win over $40,000 worth of prizes!
Join Manhattan Prep instructor Whitney Garner for a fun—and thorough—review of logic-based (non-math) problems, with a particular emphasis on Data Sufficiency and Two-Parts.
Here is the essential guide to securing scholarships as an MBA student! In this video, we explore the various types of scholarships available, including need-based and merit-based options.
Still interested in this question? Check out the "Best Topics" block below for a better discussion on this exact question, as well as several more related questions.
How does one know the one got all the possible solutions to such equations? Are there any rules ?
Hi!
Yes. There are rules.
I teach, IMHO, a very good and systematic method to solve ANY type of absolute value problem. Learn this method because it works EVERY TIME.
1) first determine the "critical points" of the equation. The critical points are those point at which a complete expression inside one of the absolute value sign changes from positive to negative or vice-versa.
2) Rewrite the equations in the intervals between +infinity, -infinity, and all of the critical points WITHOUT absolute value signs.
3) Solve for each interval. IF the solution(s) are not compatible with the interval you are in, then that solution is not valid.
Repeat steps 2 and 3 for each interval.
I know it's a little confusing, but let me give you a few examples:
Ex 1: (Easy example you can do in your head)
Solve: |x - 1| = 4
Step 1:
The critical point here is x=1 because at this point, the expression x - 1 changes sign.
Steps 2 and 3:
The important intervals are x 1. (It is okay to include the endpoint in the intervals).
When x 1, the expression x - 1 is always positive, so the absval signs will have no effect on the expression. So for this interval, lets rewrite it as:
x - 1 = 4, and solving, we get x = 5. The solution is in the interval (x > 1) so it is also a valid solution, thus the solution set is x = {-3,5}.
Example 2: (You can do this one in your head only if you are Russian or Chinese (they learn Calculus before puberty), but it's real easy to get confused).
Solve: |x тАУ 2| - |x тАУ 3| = |x тАУ 5|?
Step 1:
Recall, the critical points are -inf, +inf, and any finite numbers that causes any complete expression within an absolute value pair to change signs from negative to positive or vice-versa. For example, as x goes from less than 2 to greater than 2, тАЬx тАУ 2тАЭ тАУ the expression inside the first pair of absolute value signs тАУ goes from negative to positive. Hence, 2 is one of the critical points. By the same logic, we can deduce that the other two critical points are 3 and 5.
Steps 2 and 3:
Since the finite critical point is 2, we will choose our first interval of interest as -inf = 0. Rewriting the equation so that it would always be true in this interval, we get
(2C)! = C + C or (2C!) = 2C.
Now divide both sides by 2C, we get:
(2C - 1)! = 1.
Well, (2C - 1)! will equal 1 only when (2C - 1) = 0 or 1, hence C must equal either 1/2 or 1. Hence, the solution is C = {1/2, 1}.
Note: it is possible to write equations that make this method a little tedious (i've seen a few of Stoylar's equation where there are nested abs val signs such as: ||X^2| - 2X| = ||X + 4| - (|X| - 3)| -- yes, he can be a sadist.)
Two relevant comments: 1) you can still use this method -- it's just a little trickier to determine what the critical points are; and 2) you will NEVER get a problem like this on the GMAT, so don't worry, be happy.
Hope this adds a nice tool to your toolbox!
Archived Topic
Hi there,
This topic has been closed and archived due to inactivity or violation of community quality standards. No more replies are possible here.
Still interested in this question? Check out the "Best Topics" block above for a better discussion on this exact question, as well as several more related questions.