Last visit was: 19 Nov 2025, 16:15 It is currently 19 Nov 2025, 16:15
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
mbafall2011
Joined: 21 Mar 2010
Last visit: 03 Aug 2012
Posts: 240
Own Kudos:
Given Kudos: 33
Posts: 240
Kudos: 87
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
vinodmallapu
Joined: 06 May 2011
Last visit: 14 Dec 2011
Posts: 8
Own Kudos:
Posts: 8
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
fluke
The following answers may not be correct. If you find some discrepancy in the solution, please PM me or post it under the same topic. I took a cursory look into the OA's but am yet to match all my answers and compare the logic.
Bunuel

5. RACE:
A and B ran, at their respective constant rates, a race of 480 m. In the first heat, A gives B a head start of 48 m and beats him by 1/10th of a

minute. In the second heat, A gives B a head start of 144 m and is beaten by 1/30th of a minute. What is B’s speed in m/s?
(A) 12
(B) 14
(C) 16
(D) 18
(E) 20

Let A's speed: A m/s
Let B's speed: B m/s

1/10th of a minute = 6sec
1/30th of a minute = 2sec

Total distance of the race track = 480m

First heat;
A's distance = 480m
A's speed = A m/s
A's time = t secs

B's distance = 480-48=432m
B's speed = B m/s
B's time = t+6 secs

A's time = B's time - 6 (if A took 1000 seconds; B took 1006 seconds)
\(\frac{480}{A}=\frac{432}{B}-6\) ------ 1st (\(rate*time=distance \quad or \quad time,t=D/r\))

Second heat;
A's distance = 480m
A's speed = A m/s
A's time = t secs

B's distance = 480-144=336m
B's speed = B m/s
B's time = t-2 secs

A's time = B's time + 2
\(\frac{480}{A}=\frac{336}{B}+2\) ------ 2nd

Using 1st and 2nd,
\(\frac{432}{B}-6=\frac{336}{B}+2\)

\(\frac{432}{B}-\frac{336}{B}=8\)

\(\frac{96}{B}=8\)

\(B=12\)

B's speed : 12m/s

Ans: "A"



I dont have any Question on calculations made above.
But i do have a clarification to ask.

While calculating the time of B , it appears that we have not accounted the time taken by B to cover the first 48m(first heat) or 144m (second heat).
( As if the start time taken into consideration is the point from when both A and B are in action ).
Why is that we are going by this. I mean why are we not considering the head start time provided to B.

Please correct me if i missed anything.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
Kudos
Add Kudos
Bookmarks
Bookmark this Post
vinodmallapu
fluke
The following answers may not be correct. If you find some discrepancy in the solution, please PM me or post it under the same topic. I took a cursory look into the OA's but am yet to match all my answers and compare the logic.
Bunuel

5. RACE:
A and B ran, at their respective constant rates, a race of 480 m. In the first heat, A gives B a head start of 48 m and beats him by 1/10th of a

minute. In the second heat, A gives B a head start of 144 m and is beaten by 1/30th of a minute. What is B’s speed in m/s?
(A) 12
(B) 14
(C) 16
(D) 18
(E) 20

Let A's speed: A m/s
Let B's speed: B m/s

1/10th of a minute = 6sec
1/30th of a minute = 2sec

Total distance of the race track = 480m

First heat;
A's distance = 480m
A's speed = A m/s
A's time = t secs

B's distance = 480-48=432m
B's speed = B m/s
B's time = t+6 secs

A's time = B's time - 6 (if A took 1000 seconds; B took 1006 seconds)
\(\frac{480}{A}=\frac{432}{B}-6\) ------ 1st (\(rate*time=distance \quad or \quad time,t=D/r\))

Second heat;
A's distance = 480m
A's speed = A m/s
A's time = t secs

B's distance = 480-144=336m
B's speed = B m/s
B's time = t-2 secs

A's time = B's time + 2
\(\frac{480}{A}=\frac{336}{B}+2\) ------ 2nd

Using 1st and 2nd,
\(\frac{432}{B}-6=\frac{336}{B}+2\)

\(\frac{432}{B}-\frac{336}{B}=8\)

\(\frac{96}{B}=8\)

\(B=12\)

B's speed : 12m/s

Ans: "A"



I dont have any Question on calculations made above.
But i do have a clarification to ask.

While calculating the time of B , it appears that we have not accounted the time taken by B to cover the first 48m(first heat) or 144m (second heat).
( As if the start time taken into consideration is the point from when both A and B are in action ).
Why is that we are going by this. I mean why are we not considering the head start time provided to B.

Please correct me if i missed anything.

When A gives B a head start of 48 m, it means B starts from 48 m ahead of the start line while A starts from the start line. They both start the race at the same time and run till A reaches the finish line. Thereafter, only B runs for 1/10th of a minute.
There is no head start time provided to B, only head start distance.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [2]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel

5. RACE:
A and B ran, at their respective constant rates, a race of 480 m. In the first heat, A gives B a head start of 48 m and beats him by 1/10th of a

minute. In the second heat, A gives B a head start of 144 m and is beaten by 1/30th of a minute. What is B’s speed in m/s?
(A) 12
(B) 14
(C) 16
(D) 18
(E) 20

Alternative Approach here:

A starts from the start line and runs till the finish line in both the races. He would take the same time in both the cases then. On the other hand, in the first race, B takes 6 secs more than A while in the second race, B takes 2 secs less than A.
So there is a time difference of 8 secs in the time taken by B in the two cases. B travels (144 - 48 =) 96 m less in the second race and taken 8 secs less in the second race. This means that in the first race, B runs a distance of 96m in 8 secs.
So speed of B = 96/8 = 12 m/sec
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
Kudos
Add Kudos
Bookmarks
Bookmark this Post
flokki
Bunuel
SOLUTION OF 8-10
8. THE AVERAGE TEMPERATURE:
The average of temperatures at noontime from Monday to Friday is 50; the lowest one is 45, what is the possible maximum range of the temperatures?

A. 20
B. 25
C. 40
D. 45
E. 75

Average=50, Sum of temperatures=50*5=250
As the min temperature is 45, max would be 250-4*45=70 --> The range=70(max)-45(min)=25

Answer: B.



Isnt the correct answer A. it says 45 is the lowest temperature. Doest that statement imply that all other numbers have to be greater than 45. Hence at least 45,00001?

No, it doesn't. There can be more than 1 temperatures equal to 45.

COMPLETE SOLUTION:

Given: T(min)=45 and average=50 --> sum of temperatures=50*5=250.

We want to maximize the range --> in order to maximize the range we need to maximize the highest temperature --> in order to maximize the highest temperature we should make all other temperatures as low as possible, so equal to 45 (lower limit) --> T(max)=250-4*45=70 --> Range=T(max)-T(min)=70-45=25.

Answer: B.

Hope it's clear.
User avatar
imhimanshu
Joined: 07 Sep 2010
Last visit: 08 Nov 2013
Posts: 220
Own Kudos:
Given Kudos: 136
GMAT 1: 650 Q49 V30
Posts: 220
Kudos: 6,136
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Bunuel,
I understand the below solution. However, I was wondering if it could be solved using combination approach. Please tell me where I am going wrong.

Probability = favorable/ total outcomes.
Total outcomes = 9C2 (i.e total ways if drawing 2 balls)
Favorable = 3C2*4C1
Hence Probability = 3C2*4C1/9C2 = 1/6. which is completely wrong.
Please reply.
Thanks
H


Quote:
6. PROBABILITY OF DRAWING:
A bag contains 3 red, 4 black and 2 white balls. What is the probability of drawing a red and a white ball in two successive draws, each ball being put back after it is drawn?
(A) 2/27
(B) 1/9
(C) 1/3
(D) 4/27
(E) 2/9

This is with replacement case (and was solved incorrectly by some of you):



We are multiplying by 2 as there are two possible wining scenarios RW and WR.

Answer: D.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
Kudos
Add Kudos
Bookmarks
Bookmark this Post
imhimanshu
Hi Bunuel,
I understand the below solution. However, I was wondering if it could be solved using combination approach. Please tell me where I am going wrong.

Probability = favorable/ total outcomes.
Total outcomes = 9C2 (i.e total ways if drawing 2 balls)
Favorable = 3C2*4C1
Hence Probability = 3C2*4C1/9C2 = 1/6. which is completely wrong.
Please reply.
Thanks
H


Quote:
6. PROBABILITY OF DRAWING:
A bag contains 3 red, 4 black and 2 white balls. What is the probability of drawing a red and a white ball in two successive draws, each ball being put back after it is drawn?
(A) 2/27
(B) 1/9
(C) 1/3
(D) 4/27
(E) 2/9

This is with replacement case (and was solved incorrectly by some of you):



We are multiplying by 2 as there are two possible wining scenarios RW and WR.

Answer: D.

Since we have the case with replacement then we can not use \(C^2_9\) for it, because it gives total # of ways to select 2 different balls out of 9 without replacement.

If you wan to solve this question with combinations approach you still should consider two scenarios: \(P(RW)=2*\frac{C^1_3*C^1_2}{C^1_9*C^1_9}=\frac{4}{27}\), we are multiplying by 2 for the same reason: there are two possible wining scenarios RW and WR..

Hope it's clear.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
Kudos
Add Kudos
Bookmarks
Bookmark this Post
theamwan
Bunuel
SOLUTION:
3. LEAP YEAR:
How many randomly assembled people are needed to have a better than 50% probability that at least 1 of them was born in a leap year?

A. 1
B. 2
C. 3
D. 4
E. 5

Probability of a randomly selected person NOT to be born in a leap year=3/4
Among 2 people, probability that none of them was born in a leap = 3/4*3/4=9/16. The probability at least one born in leap = 1- 9/16=7/16<1/2
So, we are looking for such n (# of people), when 1-(3/4)^n>1/2
n=3 --> 1-27/64=37/64>1/2

Thus min 3 people are needed.

Answer: C.


Hi Bunuel - Regarding this question, I believe the answer should be 2 i.e. (B).

It is because the probability of a person's birth year to be a leap yr = 1/2, this is identical to a rainy/non-rainy day situation, where a year is either a leap or normal year.


Case I - No of people = 1
Probability of atleast 1 person's birth yr falling on a leap year = 1/2 = 50%
.....INCORRECT

Case II - No of people = 2
Probability of none of guys' birth year falling on a leap year = 1/2*1/2 = 1/4
Probability of atleast one of them was born on a leap year = 1 - 1/4 = 3/4 = 75%
.....CORRECT

Hence (B).

What do you think? Thanks!

That's not correct out of 4 years 1 is leap, so the probability of a randomly selected person NOT to be born in a leap year is 3/4.
avatar
theamwan
Joined: 25 Jan 2012
Last visit: 29 Sep 2015
Posts: 1
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel


That's not correct out of 4 years 1 is leap, so the probability of a randomly selected person NOT to be born in a leap year is 3/4.

But the question doesn't say that it's a set of 4 consecutive years. What if the years chosen are 2011, 2010, 2009, 2007?
IMO, a person's birth year to fall on a leap year should be a binary value - Y or N, hence a 50% probability.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,368
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
theamwan
Bunuel


That's not correct out of 4 years 1 is leap, so the probability of a randomly selected person NOT to be born in a leap year is 3/4.

But the question doesn't say that it's a set of 4 consecutive years. What if the years chosen are 2011, 2010, 2009, 2007?
IMO, a person's birth year to fall on a leap year should be a binary value - Y or N, hence a 50% probability.

Again that's not correct. Let me ask you a question: what is the probability that a person in born on Monday? Is it 1/2? No, it's 1/7.
User avatar
dianamao
Joined: 25 Jun 2011
Last visit: 14 Jul 2013
Posts: 23
Own Kudos:
Given Kudos: 7
Location: Sydney
Posts: 23
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
SOLUTION:
6. PROBABILITY OF DRAWING:
A bag contains 3 red, 4 black and 2 white balls. What is the probability of drawing a red and a white ball in two successive draws, each ball being put back after it is drawn?
(A) 2/27
(B) 1/9
(C) 1/3
(D) 4/27
(E) 2/9

This is with replacement case (and was solved incorrectly by some of you):

\(P=2*\frac{3}{9}*\frac{2}{9}=\frac{4}{27}\)

We are multiplying by 2 as there are two possible wining scenarios RW and WR.

Answer: D.

The question says that red and white balls are selected in two Successive draws. Doesn't this imply that white is selected AFTER red? Thus no need for x2?

Thanks,
Diana
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,368
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dianamao
Bunuel
SOLUTION:
6. PROBABILITY OF DRAWING:
A bag contains 3 red, 4 black and 2 white balls. What is the probability of drawing a red and a white ball in two successive draws, each ball being put back after it is drawn?
(A) 2/27
(B) 1/9
(C) 1/3
(D) 4/27
(E) 2/9

This is with replacement case (and was solved incorrectly by some of you):

\(P=2*\frac{3}{9}*\frac{2}{9}=\frac{4}{27}\)

We are multiplying by 2 as there are two possible wining scenarios RW and WR.

Answer: D.

The question says that red and white balls are selected in two Successive draws. Doesn't this imply that white is selected AFTER red? Thus no need for x2?

Thanks,
Diana

No, in that case we would be asked "what is the the probability of the first ball being red and the second ball being white?"
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
Kudos
Add Kudos
Bookmarks
Bookmark this Post
B lost by 6 seconds, so B's time is greater than A's time: B-6=A.
avatar
geneticsgene
Joined: 12 Jan 2012
Last visit: 24 Jan 2021
Posts: 17
Own Kudos:
Given Kudos: 10
GMAT 1: 720 Q49 V39
GMAT 1: 720 Q49 V39
Posts: 17
Kudos: 29
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
SOLUTION:
6. PROBABILITY OF DRAWING:
A bag contains 3 red, 4 black and 2 white balls. What is the probability of drawing a red and a white ball in two successive draws, each ball being put back after it is drawn?
(A) 2/27
(B) 1/9
(C) 1/3
(D) 4/27
(E) 2/9

This is with replacement case (and was solved incorrectly by some of you):

\(P=2*\frac{3}{9}*\frac{2}{9}=\frac{4}{27}\)

We are multiplying by 2 as there are two possible wining scenarios RW and WR.

Answer: D.

Hi Bunuel

I guess the question should be re-worded to restrict the number of draws to 2.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
Kudos
Add Kudos
Bookmarks
Bookmark this Post
geneticsgene
Bunuel
SOLUTION:
6. PROBABILITY OF DRAWING:
A bag contains 3 red, 4 black and 2 white balls. What is the probability of drawing a red and a white ball in two successive draws, each ball being put back after it is drawn?
(A) 2/27
(B) 1/9
(C) 1/3
(D) 4/27
(E) 2/9

This is with replacement case (and was solved incorrectly by some of you):

\(P=2*\frac{3}{9}*\frac{2}{9}=\frac{4}{27}\)

We are multiplying by 2 as there are two possible wining scenarios RW and WR.

Answer: D.

Hi Bunuel

I guess the question should be re-worded to restrict the number of draws to 2.

I think we are given that: "What is the probability of drawing a red and a white ball in two successive draws..."
User avatar
Archit143
Joined: 21 Sep 2012
Last visit: 20 Sep 2016
Posts: 721
Own Kudos:
Given Kudos: 70
Status:Final Lap Up!!!
Affiliations: NYK Line
Location: India
GMAT 1: 410 Q35 V11
GMAT 2: 530 Q44 V20
GMAT 3: 630 Q45 V31
GPA: 3.84
WE:Engineering (Transportation)
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I think i made mistake since 6 can be also a probable number but is not a multiple of 4..............Bunuel can u pls help me solve this one using multiple principle
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,368
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,368
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Archit143
I think i made mistake since 6 can be also a probable number but is not a multiple of 4..............Bunuel can u pls help me solve this one using multiple principle

If an integer n is to be chosen at random from the integers 1 to 96, inclusive, what is the probability that n(n + 1)(n + 2) will be divisible by 8?

A. 25%
B. 50%
C. 62.5%
D. 72.5%
E. 75%

\(n(n + 1)(n + 2)\) is divisible by 8 in two cases:

A. \(n=even\), in this case \(n+2=even\) too and as \(n\) and \(n+2\) are consecutive even integers one of them is also divisible by 4, so their product is divisible by 2*4=8;
B. \(n+1\) is itself divisible by 8;

(Notice that these two sets have no overlaps, as when \(n\) and \(n+2\) are even then \(n+1\) is odd and when \(n+1\) is divisible by 8 (so even) then \(n\) and \(n+2\) are odd.)

Now, in EACH following groups of 8 numbers: {1-8}, {9-16}, {17-24}, ..., {89-96} there are EXACTLY 5 numbers satisfying the above two condition for n, for example in {1, 2, 3, 4, 5, 6, 7, 8} n can be: 2, 4, 6, 8 (n=even), or 7 (n+1 is divisible by 8). So, the overall probability is 5/8=0.625.

Answer: C.

Similar question: divisible-by-12-probability-121561.html

Hope it helps.
avatar
MegW
Joined: 29 Oct 2012
Last visit: 05 Jul 2020
Posts: 2
Given Kudos: 2
GMAT 1: 640 Q48 V31
GPA: 4
Products:
GMAT 1: 640 Q48 V31
Posts: 2
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
angel2009
Bunuel
SOLUTION:
6. PROBABILITY OF DRAWING:
A bag contains 3 red, 4 black and 2 white balls. What is the probability of drawing a red and a white ball in two successive draws, each ball being put back after it is drawn?
(A) 2/27
(B) 1/9
(C) 1/3
(D) 4/27
(E) 2/9

This is with replacement case (and was solved incorrectly by some of you):

P=2*3/9*2/9=4/27

We are multiplying by 2 as there are two possible wining scenarios RW and WR.

Answer: D.

I've some problem to understand this ; as the two events are mutually exclusive , independent.
So why not the answer is 3/9*2/9 = 2/27

Winning scenario consists of TWO cases RW and WR. Probability of each case is: 3/9*2/9, so 3/9*2/9+3/9*2/9=2*3/9*2/9.

Only 3/9*2/9 would be correct answer if we were asked to determine the probability of FIRST ball being red and SECOND white, OR FIRST white and SECOND red. These are the cases in which order of drawing matters.

Hey can you please help with the solution using combination formula

P(1R1W) = 3C1 x 2C1 / (9C2) = 1/6 WHY? what am i doing wrong?
   1   2   3   4   
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts