Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: With # and & each representing different digits in the problem below, [#permalink]

Show Tags

16 Apr 2015, 05:48

1

This post received KUDOS

Bunuel wrote:

With # and & each representing different digits in the problem below, the difference between #&& and ## is 667. What is the value of &?

#&& - ## ____ 667

(A) 3 (B) 4 (C) 5 (D) 8 (E) 9

With subtraction principal, on the units place & - # = 7 and and tens place & - # = 6 this means & is smaller than # so it borrows from the tens digit and subsequently hundred's digit. Now Hundred's digit is # and the result is 6, which is left after the tens digit borrowed 1 from it => # = 7

Thus, at unit place, & - # = 7 => & - 7 = 7 => & was 14 as it borrowed from the tens digit; this means its actual value is 4

Re: With # and & each representing different digits in the problem below, [#permalink]

Show Tags

16 Apr 2015, 09:42

2

This post received KUDOS

Did by plugging value. 1) If & = 3, then # becomes 6 but 633 - 66 = 567 not 667. So Not A. 2) If & = 4 then # becomes 7 and 744 - 77 = 667. Hence B.
_________________

With # and & each representing different digits in the problem below, the difference between #&& and ## is 667. What is the value of &?

#&& - ## ____ 667

(A) 3 (B) 4 (C) 5 (D) 8 (E) 9

A hint is given in the problem - the hundreds digit of the larger number #&& is # which leads to 6 in the result. So # must be 6 or 7. But if you subtract 66 from 6&&, you will not get 667 (the largest value you can get is 699 - 66 = 633). So # must be 7. Now the question is very simple 7&& - 77 = 667 7&& = 667 + 77 = 744

Now, many would look at this problem and think “I don’t know how to solve problems like that…”, as it’s not a classic “Algebra” problem, but it’s not a straight-up “Subtraction” problem, either. It uses the common GMAT themes of Abstraction and Reverse-Engineering to test you conceptually to see how you think critically to solve problems. And in true Eminem-mocking form, the key to a complicated-looking problem like this is a lot more mainstream than it is advanced. You have to just get started playing with the numbers, testing possibilities for # and & and seeing what you learn from it.

When GMAT students lament that “I don’t know what tools to use” to start on a tough problem, they’re often missing this piece of GMAT wisdom – *that’s* the point. You’re supposed to look at this with some trial-and-error like you would in a business meeting, throwing some ideas out and eliminating those that definitely won’t work so that you can spend some more time on the ones that have a good chance. In this case, throw out a couple ideas for #. Could # be 5? If it were, then you’d have a number in the 500s and you’d subtract something from it. There’s no way to get to 667 if you start smaller than that and only subtract, so even with pretty limited information you can guarantee that # has to be 6 or bigger.

And by the same logic, try a value like 9 for #. That would give you 900-and-something, and the most that ## could be is 99 (the largest two-digit number), which would mean that your answer would still be greater than 800. You need a number for # that allows you to stay in the 667 range, meaning that # has to be 6 or 7. That means that you’re working with:

6&& – 66 = 667

or

7&& – 77 = 667

And just by playing with numbers, you’ve been able to take a very abstract problem and make it quite a bit more concrete. If you examine the first of those options, keep in mind that the biggest that & can be is 9, and that would leave you with:

699 – 66 = 633, demonstrating that even at the biggest possible value of &, if # = 6 you can’t get a big enough result to equal 667. So, again, by playing with numbers to find minimums and maximums, we’ve proven that the problem has to be:

7&& – 77 = 667, and now you can treat it just like an algebra problem, since the only unknown is now 7&&. Adding 77 to both sides, you get 7&& = 744, so the answer is 4.

More important than this problem, however, is the takeaway – GMAT problems are often designed to look abstract and to test math in a different “order” (here you had two unknowns to “start” the problem and were given the “answer”), and the exam does a masterful job of taking common concepts (this was a subtraction problem) and presenting them to look like something you’ve never seen. The most dangerous mindset you can have on the GMAT quant section is “I don’t know how to solve problems like this” or “I’ve never seen this before”, whereas the successful strategy is to take a look at what you’re given and at least try a few possibilities. With symbol problems (like this), sequence problems, numbers-too-large-to-calculate problems, etc., often the biggest key is to go a lot more mainstream than “advanced math” – try a few small numbers to test the relationship in the problem, and use that to narrow the range of possibilities, find a pattern, or learn a little more about the concept in the problem.

If your standard mindset on abstract-looking problems is “I don’t know how to solve problems like that”, both Em and the G-Em-A-T are right to chide you a bit mockingly, as that’s often the entire point of the problem, to reward those who are willing to try (the entrepreneurial, self-starter types) and “punish” those who won’t think beyond the process they’ve memorized. Even if you don’t become a GMAT God, if you follow some of Eminem’s lessons you can at least find yourself saying “Hi, my name is…” over and over again at b-school orientation.
_________________

Re: With # and & each representing different digits in the problem below, [#permalink]

Show Tags

03 Dec 2017, 11:00

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________