Last visit was: 11 Dec 2024, 23:32 It is currently 11 Dec 2024, 23:32
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Russ19
Joined: 29 Oct 2019
Last visit: 29 Sep 2024
Posts: 1,347
Own Kudos:
1,683
 [12]
Given Kudos: 582
Posts: 1,347
Kudos: 1,683
 [12]
1
Kudos
Add Kudos
11
Bookmarks
Bookmark this Post
User avatar
chetan2u
User avatar
RC & DI Moderator
Joined: 02 Aug 2009
Last visit: 10 Dec 2024
Posts: 11,436
Own Kudos:
37,976
 [1]
Given Kudos: 333
Status:Math and DI Expert
Products:
Expert reply
Posts: 11,436
Kudos: 37,976
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
HaliGaliGmat
Joined: 29 Sep 2024
Last visit: 28 Nov 2024
Posts: 5
Given Kudos: 11
Posts: 5
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
nishantswaft
Joined: 17 Oct 2024
Last visit: 11 Dec 2024
Posts: 23
Own Kudos:
5
 [1]
Given Kudos: 1
Posts: 23
Kudos: 5
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hey give a look at the equation before that which is in brackets.

\(\frac{(√9 + √7)-(√7 + √5)+(√5 + √3)-(√3 + √1)}{2}\)

If you'll open the brackets the equation will become

\(\frac{(√9 + √7-√7 - √5+√5 + √3-√3 -√1)}{2}\)

This is how you'll proceed.

Hope this helps.
Hit KUDOS, It motivates.


HaliGaliGmat
chetan2u
sjuniv32
\(\frac{1}{√9 − √7} − \frac{1}{√7 − √5 }+ \frac{1}{√5 − √3} − \frac{1}{√5 − √3}\) =

A) \(\frac{1}{2}\)

B) 1

C) 2

D) 2√2

E) \( 4 − √7 + √5 − √3\)



The question is faulty. it should be as below
\(\frac{1}{√9 − √7} − \frac{1}{√7 − √5 }+ \frac{1}{√5 − √3}\) -\(\frac{1}{√3 − √1} \)

Let us remove the square root from the denominator by multiplying both the numerator and the denominator by the conjugate of the denominator.
Also, remember in all such questions: \(a^2-b^2=(a-b)(a+b)\)

\(\frac{1}{√9 − √7} − \frac{1}{√7 − √5 }+ \frac{1}{√5 − √3} − \frac{1}{√3 − √1}\) =

\(\frac{1*(√9 + √7)}{(√9 − √7)(√9 + √7)} − \frac{1*(√7 + √5)}{(√7 − √5)(√7 + √5) }+ \frac{1*(√5 + √3)}{(√5 - √3)(√5 + √3)} − \frac{(√3 + √1)}{(√3 -√1)(√3 + √1)}\)

\(\frac{(√9 + √7)}{9-7} − \frac{(√7 + √5)}{7-5 }+ \frac{(√5 + √3)}{5-3} − \frac{(√3 + √1)}{3-1}\)

\(\frac{(√9 + √7)}{2} − \frac{(√7 + √5)}{2 }+ \frac{(√5 + √3)}{2} − \frac{(√3 + √1)}{2}\)

\(\frac{(√9 + √7)-(√7 + √5)+(√5 + √3)-(√3 + √1)}{2}=\frac{√9 - √1}{2}=\frac{3-1}{2}=\frac{2}{2}=1\)

B
Hi, thank you for providing a solution! Could you please explain how you got the the last term of square root(9) - square root of (1) / 2 ? how did yo get squrare root of 9 and square root of 1 from the previous terms? thank you!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 11 Dec 2024
Posts: 97,815
Own Kudos:
685,180
 [1]
Given Kudos: 88,242
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,815
Kudos: 685,180
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
HaliGaliGmat
chetan2u
sjuniv32
\(\frac{1}{√9 − √7} − \frac{1}{√7 − √5 }+ \frac{1}{√5 − √3} − \frac{1}{√5 − √3}\) =

A) \(\frac{1}{2}\)

B) 1

C) 2

D) 2√2

E) \( 4 − √7 + √5 − √3\)



The question is faulty. it should be as below
\(\frac{1}{√9 − √7} − \frac{1}{√7 − √5 }+ \frac{1}{√5 − √3}\) -\(\frac{1}{√3 − √1} \)

Let us remove the square root from the denominator by multiplying both the numerator and the denominator by the conjugate of the denominator.
Also, remember in all such questions: \(a^2-b^2=(a-b)(a+b)\)

\(\frac{1}{√9 − √7} − \frac{1}{√7 − √5 }+ \frac{1}{√5 − √3} − \frac{1}{√3 − √1}\) =

\(\frac{1*(√9 + √7)}{(√9 − √7)(√9 + √7)} − \frac{1*(√7 + √5)}{(√7 − √5)(√7 + √5) }+ \frac{1*(√5 + √3)}{(√5 - √3)(√5 + √3)} − \frac{(√3 + √1)}{(√3 -√1)(√3 + √1)}\)

\(\frac{(√9 + √7)}{9-7} − \frac{(√7 + √5)}{7-5 }+ \frac{(√5 + √3)}{5-3} − \frac{(√3 + √1)}{3-1}\)

\(\frac{(√9 + √7)}{2} − \frac{(√7 + √5)}{2 }+ \frac{(√5 + √3)}{2} − \frac{(√3 + √1)}{2}\)

\(\frac{(√9 + √7)-(√7 + √5)+(√5 + √3)-(√3 + √1)}{2}=\frac{√9 - √1}{2}=\frac{3-1}{2}=\frac{2}{2}=1\)

B
Hi, thank you for providing a solution! Could you please explain how you got the the last term of square root(9) - square root of (1) / 2 ? how did yo get squrare root of 9 and square root of 1 from the previous terms? thank you!
All terms except √9 and √1 cancel out.

\(\frac{(√9 + √7)-(√7 + √5)+(√5 + √3)-(√3 + √1)}{2}= \)

\(=\frac{√9 + √7-√7 - √5+√5 + √3-√3 - √1}{2}= \)

\( =\frac{√9 - √1}{2}\)
Moderator:
Math Expert
97815 posts