Last visit was: 19 Nov 2025, 14:54 It is currently 19 Nov 2025, 14:54
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
Muki
Joined: 30 Aug 2011
Last visit: 11 Sep 2014
Posts: 10
Own Kudos:
22
 [1]
Given Kudos: 17
Location: United States
Concentration: General Management, International Business
Schools: ISB '15
GMAT 1: 680 Q46 V37
WE:Project Management (Computer Software)
Schools: ISB '15
GMAT 1: 680 Q46 V37
Posts: 10
Kudos: 22
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
EvaJager
Joined: 22 Mar 2011
Last visit: 31 Aug 2016
Posts: 514
Own Kudos:
2,326
 [2]
Given Kudos: 43
WE:Science (Education)
Posts: 514
Kudos: 2,326
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Archit143
Joined: 21 Sep 2012
Last visit: 20 Sep 2016
Posts: 721
Own Kudos:
Given Kudos: 70
Status:Final Lap Up!!!
Affiliations: NYK Line
Location: India
GMAT 1: 410 Q35 V11
GMAT 2: 530 Q44 V20
GMAT 3: 630 Q45 V31
GPA: 3.84
WE:Engineering (Transportation)
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
EvaJager
Joined: 22 Mar 2011
Last visit: 31 Aug 2016
Posts: 514
Own Kudos:
Given Kudos: 43
WE:Science (Education)
Posts: 514
Kudos: 2,326
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Archit143
Bunuel
5. The angles in a triangle are x, 3x, and 5x degrees. If a, b and c are the lengths of the sides opposite to angles x, 3x, and 5x respectively, then which of the following must be true?
I. c>a+b
II. c^2>a^2+b^2
III. c/a/b=10/6/2

A. I only
B. II only
C. III only
D. I and III only
E. II and III only

According to the relationship of the sides of a triangle: the length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides. Thus I and III can never be true: one side (c) can not be larger than the sum of the other two sides (a and b). Note that III is basically the same as I: if c=10, a=6 and b=2 then c>a+b, which can never be true. Thus even not considering the angles, we can say that only answer choice B (II only) is left.

Answer: B.

Now, if interested why II is true: as the angles in a triangle are x, 3x, and 5x degrees then x+3x+5x=180 --> x=20, 3x=60, and 5x=100. Next, if angle opposite c were 90 degrees, then according to Pythagoras theorem c^2=a^+b^2, but since the angel opposite c is more than 90 degrees (100) then c is larger, hence c^2>a^+b^2.

Let the side opposite to 5x = 10 , 3x = 9 and x = 8
C^2 > a^2 + b^2
wont hold true
pls explain

The angles are uniquely determined: 20, 60 and 100.
Then, the sides cannot be anything you wish. All the triangles with angles 20, 60, and 180 are similar, which means, once you have fixed one side, the other two are uniquely determined.
For example, if you consider that the side opposing the 20 angle is 10, then the side opposing the 60 angle should be approximately 25.3209 , it cannot be 9.
You need trigonometry (which is out of the scope of the GMAT) to determine the sides. But definitely, they cannot be 10, 9 and 8.
avatar
sharmila79
Joined: 15 May 2012
Last visit: 16 Jun 2014
Posts: 19
Own Kudos:
Given Kudos: 94
Posts: 19
Kudos: 6
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
4. If -3<x<5 and -7<y<9, which of the following represent the range of all possible values of y-x?
A. -4<y-x<4
B. -2<y-x<4
C. -12<y-x<4
D. -12<y-x<12
E. 4<y-x<12

To get max value of y-x take max value of y and min value of x: 9-(-3)=12;
To get min value of y-x take min value of y and max value of x: -7-(5)=-12;

Hence, the range of all possible values of y-x is -12<y-x<12.

Answer: D.

Those values of x and y you had considered would be right if there was an <= symbol at all the places where there are inequality signs. But, provided there is no = symbol along with < and >, then won't the range be -10 to +10? Please explain!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,361
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,361
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
sharmila79
Bunuel
4. If -3<x<5 and -7<y<9, which of the following represent the range of all possible values of y-x?
A. -4<y-x<4
B. -2<y-x<4
C. -12<y-x<4
D. -12<y-x<12
E. 4<y-x<12

To get max value of y-x take max value of y and min value of x: 9-(-3)=12;
To get min value of y-x take min value of y and max value of x: -7-(5)=-12;

Hence, the range of all possible values of y-x is -12<y-x<12.

Answer: D.

Those values of x and y you had considered would be right if there was an <= symbol at all the places where there are inequality signs. But, provided there is no = symbol along with < and >, then won't the range be -10 to +10? Please explain!

If y=8.9 and x=-2.9, then y-x=11.8.
If y=-6.9 and x=4.9, then y-x=-11.8.

So, your range (-10 , 10) is clearly wrong.

Consider the following approach, we have -3<x<5 and -7<y<9,

Add y<9 and -3<x --> y-3<9+x --> y-x<12;
Add -7<y and x<5 --> -7+x<y+5 --> -12<y-x;

So, we have that -12<y-x<12.

Hope it's clear.
avatar
jjack0310
Joined: 04 May 2013
Last visit: 06 Jan 2014
Posts: 32
Own Kudos:
Given Kudos: 7
Posts: 32
Kudos: 25
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
9. Julie is putting M marbles in a row in a repeating pattern: blue, white, red, green, black, yellow, pink. If the row begins with blue marble and ends with red marble, then which of the following could be the value of M?
A. 22
B. 30
C. 38
D. 46
E. 54

There are total of 7 different color marbles in a pattern. Now, as the row begins with blue marble and ends with red marble (so ends with 3rd marble in a pattern) then M=7k+3. The only answer choice which is multiple of 7 plus 3 is 38=35+3.

Answer: C.

Sorry, this may be a silly thing to ask, I don't understand the problem.
What exactly is it asking?

Can someone please explain?

I get that it is asking how many marbles does Julie have. Here is what I am understanding:

Basically there are marbles with seven different colors. Out of which blue, white and red always stay in that order since these three form a pattern. The rest of the four marbles of different colors can be in any order. But the 8th marble will always be blue followed by white and followed by white.
Is this thinking/approach correct??

If yes, where does 38 come from and if it is not correct, please tell me what's wrong.

Thanks
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,361
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,361
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
jjack0310
Bunuel
9. Julie is putting M marbles in a row in a repeating pattern: blue, white, red, green, black, yellow, pink. If the row begins with blue marble and ends with red marble, then which of the following could be the value of M?
A. 22
B. 30
C. 38
D. 46
E. 54

There are total of 7 different color marbles in a pattern. Now, as the row begins with blue marble and ends with red marble (so ends with 3rd marble in a pattern) then M=7k+3. The only answer choice which is multiple of 7 plus 3 is 38=35+3.

Answer: C.

Sorry, this may be a silly thing to ask, I don't understand the problem.
What exactly is it asking?

Can someone please explain?

I get that it is asking how many marbles does Julie have. Here is what I am understanding:

Basically there are marbles with seven different colors. Out of which blue, white and red always stay in that order since these three form a pattern. The rest of the four marbles of different colors can be in any order. But the 8th marble will always be blue followed by white and followed by white.
Is this thinking/approach correct??

If yes, where does 38 come from and if it is not correct, please tell me what's wrong.

Thanks

No, that's not correct.

The question asks to determine how many marbles Julie has.

The pattern is always the same {blue, white, red, green, black, yellow, pink}{blue, white, red, green, black, yellow, pink}{blue, white, red, green, black, yellow, pink}...

At some point Julie does not have enough marbles to end the pattern and the row ends with a red marble: {blue, white, red}.

For example, it could happen if she had 7+3=10 marbles:
{blue, white, red, green, black, yellow, pink}{blue, white, red}

Or 7*2+3=17 marbles:
{blue, white, red, green, black, yellow, pink}{blue, white, red, green, black, yellow, pink}{blue, white, red}

Or: 7*3+3=24 marbles:
{blue, white, red, green, black, yellow, pink}{blue, white, red, green, black, yellow, pink}{blue, white, red, green, black, yellow, pink}{blue, white, red}

As you can see the number of marbles is always a multiple of 7 plus 3.

The only answer choice which is multiple of 7 plus 3 is 38 = 7*5+3:
{blue, white, red, green, black, yellow, pink}{blue, white, red, green, black, yellow, pink}{blue, white, red, green, black, yellow, pink}{blue, white, red, green, black, yellow, pink}{blue, white, red, green, black, yellow, pink}{blue, white, red}.

Hope it's clear.
avatar
sivapavan
Joined: 01 Oct 2012
Last visit: 09 Nov 2015
Posts: 3
Given Kudos: 117
Posts: 3
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
2. If x is an integer and 9<x^2<99, then what is the value of maximum possible value of x minus minimum possible value of x?
A. 5
B. 6
C. 7
D. 18
E. 20

Also tricky. Notice that \(x\) can take positive, as well as negative values to satisfy \(9<x^2<99\), hence \(x\) can be: -9, -8, -7, -6, -4, 4, 5, 6, 7, 8, or 9. We asked to find the value of \(x_{max}-x_{min}\), ans since \(x_{max}=9\) and \(x_{min}=-9\) then \(x_{max}-x_{min}=9-(-9)=18\).
[/square_root]
Answer: D.



Hi bunel
can you explain how we get max,min possible values from -9 to 9
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,361
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sivapavan
Bunuel
2. If x is an integer and 9<x^2<99, then what is the value of maximum possible value of x minus minimum possible value of x?
A. 5
B. 6
C. 7
D. 18
E. 20

Also tricky. Notice that \(x\) can take positive, as well as negative values to satisfy \(9<x^2<99\), hence \(x\) can be: -9, -8, -7, -6, -4, 4, 5, 6, 7, 8, or 9. We asked to find the value of \(x_{max}-x_{min}\), ans since \(x_{max}=9\) and \(x_{min}=-9\) then \(x_{max}-x_{min}=9-(-9)=18\).
[/square_root]
Answer: D.



Hi bunel
can you explain how we get max,min possible values from -9 to 9

Sure.

Since x is an integer and 9<x^2<99, then the least value of x is -9 --> (-9)^2<99 (x cannot be -10 because 10^2=100>99).
The same way, the max value of x is 9 --> 9^2<99 (x cannot be 10 because 10^2=100>99).

Does this make sense?
avatar
einnocenti
Joined: 08 Aug 2013
Last visit: 08 Nov 2015
Posts: 1
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
4. If -3<x<5 and -7<y<9, which of the following represent the range of all possible values of y-x?
A. -4<y-x<4
B. -2<y-x<4
C. -12<y-x<4
D. -12<y-x<12
E. 4<y-x<12

To get max value of y-x take max value of y and min value of x: 9-(-3)=12;
To get min value of y-x take min value of y and max value of x: -7-(5)=-12;

Hence, the range of all possible values of y-x is -12<y-x<12.

Answer: D.



This answer is not 100% right, because there is not the sign <= but only <.
therefore (assuming that X and Y are integers the answer is: (-6-(-4))<Y-X<(8-(-2))
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,361
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,361
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
einnocenti
Bunuel
4. If -3<x<5 and -7<y<9, which of the following represent the range of all possible values of y-x?
A. -4<y-x<4
B. -2<y-x<4
C. -12<y-x<4
D. -12<y-x<12
E. 4<y-x<12

To get max value of y-x take max value of y and min value of x: 9-(-3)=12;
To get min value of y-x take min value of y and max value of x: -7-(5)=-12;

Hence, the range of all possible values of y-x is -12<y-x<12.

Answer: D.



This answer is not 100% right, because there is not the sign <= but only <.
therefore (assuming that X and Y are integers the answer is: (-6-(-4))<Y-X<(8-(-2))

The answer IS 100% correct.

First of all we are not told that x and y are integers.

Next, consider the following approach, we have -3<x<5 and -7<y<9,

Add y<9 and -3<x --> y-3<9+x --> y-x<12;
Add -7<y and x<5 --> -7+x<y+5 --> -12<y-x;

So, we have that -12<y-x<12.

Hope it's clear.
avatar
Pmar2012
Joined: 23 Jan 2013
Last visit: 27 Apr 2015
Posts: 6
Own Kudos:
Given Kudos: 4
Posts: 6
Kudos: 240
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Bunuel,

Thank you for the very high quality questions.
Can you please explain your thinking behind the solution in question 8?

My confusion stems from the word "guarantee". Ideally the least number of chosen chips, that could result in 2 different colours, is indeed 3. However, the probability of this event is certainly not 1.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,361
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,361
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Pmar2012
Hi Bunuel,

Thank you for the very high quality questions.
Can you please explain your thinking behind the solution in question 8?

My confusion stems from the word "guarantee". Ideally the least number of chosen chips, that could result in 2 different colours, is indeed 3. However, the probability of this event is certainly not 1.

We are not interested in the probability in question 8:
8. There are 15 black chips and 5 white chips in a jar. What is the least number of chips we should pick to guarantee that we have 2 chips of the same color?

Similar questions to practice:
in-his-pocket-a-boy-has-3-red-marbles-4-blue-marbles-and-85216.html
of-the-science-books-in-a-certain-supply-room-50-are-on-131100.html
in-a-deck-of-52-cards-each-card-is-one-of-4-different-color-83183.html
a-box-contains-10-red-pills-5-blue-pills-12-yellow-56779.html
each-of-the-integers-from-0-to-9-inclusive-is-written-on-130562.html
a-student-is-asked-to-pick-marbles-from-a-bag-that-contains-72390.html
of-the-science-books-in-a-certain-supply-room-50-are-on-131100.html
if-a-librarian-randomly-removes-science-books-from-a-library-93861.html
m10-q24-ps-69233.html#p1237169

Hope this helps.
avatar
rawjetraw
Joined: 14 Oct 2013
Last visit: 05 Jul 2014
Posts: 10
Own Kudos:
Given Kudos: 31
Location: India
Concentration: General Management
Posts: 10
Kudos: 25
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
7. After 2/9 of the numbers in a data set A were observed, it turned out that 3/4 of those numbers were non-negative. What fraction of the remaining numbers in set A must be negative so that the total ratio of negative numbers to non-negative numbers be 2 to 1?
A. 11/14
B. 13/18
C. 4/7
D. 3/7
E. 3/14

If choose variable for set A there will be too many fractions to manipulate with, so pick some smart #: let set A contain 18 numbers.

"2/9 of the numbers in a data set A were observed" --> 4 observed and 18-4=14 numbers left to observe;
"3/4 of those numbers were non-negative" --> 3 non-negative and 1 negative;
Ratio of negative numbers to non-negative numbers to be 2 to 1 there should be total of 18*2/3=12 negative numbers, so in not yet observed part there should be 12-1=11 negative numbers. Thus 11/14 of the remaining numbers in set A must be negative.

Answer: A.

Hi Bunuel,

Thanks for this explanation. I tried real hard to solve this ques, when I first attempted, algebraically but couldnt do it... I know its far too easy to solve it this way .. but I always go for algebraic ... please help...

If possible please to provide an algebraic solution for this.... thanks a ton for all the help...

Cheers! :o
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,361
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,361
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
rawjetraw
Bunuel
7. After 2/9 of the numbers in a data set A were observed, it turned out that 3/4 of those numbers were non-negative. What fraction of the remaining numbers in set A must be negative so that the total ratio of negative numbers to non-negative numbers be 2 to 1?
A. 11/14
B. 13/18
C. 4/7
D. 3/7
E. 3/14

If choose variable for set A there will be too many fractions to manipulate with, so pick some smart #: let set A contain 18 numbers.

"2/9 of the numbers in a data set A were observed" --> 4 observed and 18-4=14 numbers left to observe;
"3/4 of those numbers were non-negative" --> 3 non-negative and 1 negative;
Ratio of negative numbers to non-negative numbers to be 2 to 1 there should be total of 18*2/3=12 negative numbers, so in not yet observed part there should be 12-1=11 negative numbers. Thus 11/14 of the remaining numbers in set A must be negative.

Answer: A.

Hi Bunuel,

Thanks for this explanation. I tried real hard to solve this ques, when I first attempted, algebraically but couldnt do it... I know its far too easy to solve it this way .. but I always go for algebraic ... please help...

If possible please to provide an algebraic solution for this.... thanks a ton for all the help...

Cheers! :o

Algebraic solution is a trap here and a waste of time... But anyway:

Say there are x numbers in set A.

"2/9 of the numbers in a data set A were observed" --> \(\frac{2x}{9}\) observed and \(x-\frac{2x}{9}=\frac{7x}{9}\) numbers left to observe;

"3/4 of those numbers were non-negative" --> \(\frac{3}{4}*\frac{2x}{9}=\frac{x}{6}\) non-negative and \(\frac{1}{4}*\frac{2x}{9}=\frac{x}{18}\) negative;

Ratio of negative numbers to non-negative numbers to be 2 to 1 there should be total of \(x*\frac{2}{3}\) negative numbers, so in not yet observed part there should be \(\frac{2x}{3}-\frac{x}{18}=\frac{11x}{18}\) negative numbers. Thus \(\frac{(\frac{11x}{18})}{(\frac{7x}{9})}=\frac{11}{14}\) of the remaining numbers in set A must be negative.

Hope it helps.
User avatar
pacifist85
Joined: 07 Apr 2014
Last visit: 20 Sep 2015
Posts: 324
Own Kudos:
Given Kudos: 169
Status:Math is psycho-logical
Location: Netherlands
GMAT Date: 02-11-2015
WE:Psychology and Counseling (Other)
Posts: 324
Kudos: 449
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Question 11,

I guess it should have stated that we can only unse each one of these 3 nunnbers only once, right?
Because, I used the same approach as Bunuel, but without knowing that you can only use these nubers once the process an be very long... and I am not even sure if it would end up in the same result - i guess not.

Is there sth in the way that the question is phrased that should have warned me that these numbers were only to be used once?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,361
Kudos
Add Kudos
Bookmarks
Bookmark this Post
pacifist85
Question 11,

I guess it should have stated that we can only unse each one of these 3 nunnbers only once, right?
Because, I used the same approach as Bunuel, but without knowing that you can only use these nubers once the process an be very long... and I am not even sure if it would end up in the same result - i guess not.

Is there sth in the way that the question is phrased that should have warned me that these numbers were only to be used once?

We are given a set: {1, 3, 6, 7, 7, 7}. I think it should be clear that 1, 3, and 6 should be used once, and 7 thrice.
avatar
Peltina
Joined: 15 Mar 2014
Last visit: 03 Jan 2017
Posts: 7
Given Kudos: 2
Posts: 7
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
There are 5 pairs of white, 3 pairs of black and 2 pairs of grey socks in a drawer. If four socks are picked at random what is the probability of getting two socks of the same color?
A. 1/5
B. 2/5
C. 3/4
D. 4/5
E. 1


I totally understand that we don't need to do the calculations here because the answer is obvious. However, I would like to know how we do calculate the answer to get to the official answer.
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 15 Nov 2025
Posts: 11,238
Own Kudos:
Given Kudos: 335
Status:Math and DI Expert
Location: India
Concentration: Human Resources, General Management
GMAT Focus 1: 735 Q90 V89 DI81
Products:
Expert
Expert reply
GMAT Focus 1: 735 Q90 V89 DI81
Posts: 11,238
Kudos: 43,706
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Peltina
There are 5 pairs of white, 3 pairs of black and 2 pairs of grey socks in a drawer. If four socks are picked at random what is the probability of getting two socks of the same color?
A. 1/5
B. 2/5
C. 3/4
D. 4/5
E. 1


I totally understand that we don't need to do the calculations here because the answer is obvious. However, I would like to know how we do calculate the answer to get to the official answer.

Hi,

in such questions, we look at the worst scenario..
here it would be getting different coloured socks , every time we pick socks..

but there are only three different coloured socks, so as a worst case , the first three picked up are different colours..
the fourth which you pick up has to be one of these three colours, thus ensuring that we have two socks of same colour..
hence prob is 1, that is it is sure to have two socks of atleast one colour..
   1   2   3   4   
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts