Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 43363

12 Easy Pieces (or not?) [#permalink]
Show Tags
21 Jan 2012, 05:10
40
This post received KUDOS
Expert's post
192
This post was BOOKMARKED
After posting some 700+ questions, I've decided to post the problems which are not that hard. Though each question below has a trap or trick so be careful when solving. I'll post OA's with detailed solutions after some discussion. Good luck.1. There are 5 pairs of white, 3 pairs of black and 2 pairs of grey socks in a drawer. If four socks are picked at random what is the probability of getting two socks of the same color?A. 1/5 B. 2/5 C. 3/4 D. 4/5 E. 1 Solution: 12easypiecesornot126366.html#p10339192. If x is an integer and 9<x^2<99, then what is the value of maximum possible value of x minus minimum possible value of x?A. 5 B. 6 C. 7 D. 18 E. 20 Solution: 12easypiecesornot126366.html#p10339213. Fanny and Alexander are 360 miles apart and are traveling in a straight line toward each other at a constant rate of 25 mph and 65 mph respectively, how far apart will they be exactly 1.5 hours before they meet?A. 25 miles B. 65 miles C. 70 miles D. 90 miles E. 135 miles Solution: 12easypiecesornot126366.html#p10339244. If 3<x<5 and 7<y<9, which of the following represent the range of all possible values of yx?A. 4<yx<4 B. 2<yx<4 C. 12<yx<4 D. 12<yx<12 E. 4<yx<12 Solution: 12easypiecesornot126366.html#p1033925 5. The angles in a triangle are x, 3x, and 5x degrees. If a, b and c are the lengths of the sides opposite to angles x, 3x, and 5x respectively, then which of the following must be true?I. c>a+b II. c^2>a^2+b^2 III. c/a/b=10/6/2 A. I only B. II only C. III only D. I and III only E. II and III only Solution: 12easypiecesornot126366.html#p10339306. Anna has 10 marbles: 5 red, 2 blue, 2 green and 1 yellow. She wants to arrange all of them in a row so that no two adjacent marbles are of the same color and the first and the last marbles are of different colors. How many different arrangements are possible?A. 30 B. 60 C. 120 D. 240 E. 480 Solution: 12easypiecesornot126366.html#p1033932 7. After 2/9 of the numbers in a data set A were observed, it turned out that 3/4 of those numbers were nonnegative. What fraction of the remaining numbers in set A must be negative so that the total ratio of negative numbers to nonnegative numbers be 2 to 1?A. 11/14 B. 13/18 C. 4/7 D. 3/7 E. 3/14 Solution: 12easypiecesornot126366.html#p10339338. There are 15 black chips and 5 white chips in a jar. What is the least number of chips we should pick to guarantee that we have 2 chips of the same color?A. 3 B. 5 C. 6 D. 16 E. 19 Solution: 12easypiecesornot126366.html#p10339359. Julie is putting M marbles in a row in a repeating pattern: blue, white, red, green, black, yellow, pink. If the row begins with blue marble and ends with red marble, then which of the following could be the value of M?A. 22 B. 30 C. 38 D. 46 E. 54 Solution: 12easypiecesornot126366.html#p103393610. If \(n\) is an integer and \(\frac{1}{10^{n+1}}<0.00737<\frac{1}{10^n}\), then what is the value of n?A. 1 B. 2 C. 3 D. 4 E. 5 Solution: 12easypiecesornot126366.html#p103393811. The numbers {1, 3, 6, 7, 7, 7} are used to form three 2digit numbers. If the sum of these three numbers is a prime number p, what is the largest possible value of p?A. 97 B. 151 C. 209 D. 211 E. 219 Solution: 12easypiecesornot12636620.html#p103393912. If \({\frac{1}{3}}\leq{x}\leq{\frac{1}{5}}\) and \({\frac{1}{2}}\leq{y}\leq{\frac{1}{4}}\), what is the least value of \(x^2*y\) possible?A. 1/100 B. 1/50 C. 1/36 D. 1/18 E. 1/6 Solution: 12easypiecesornot12636620.html#p1033949Please read the whole thread before posting a question. Chances are that your doubt has been already addressed.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Math Expert
Joined: 02 Sep 2009
Posts: 43363

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
25 Jan 2012, 03:45
3
This post received KUDOS
Expert's post
10
This post was BOOKMARKED
11. The numbers {1, 3, 6, 7, 7, 7} are used to form three 2digit numbers. If the sum of these three numbers is a prime number p, what is the largest possible value of p?A. 97 B. 151 C. 209 D. 211 E. 219 What is the largest possible sum of these three numbers that we can form? Maximize the first digit: 76+73+71=220=even, so not a prime. Let's try next largest sum, switch digits in 76 and we'll get: 67+73+71=211=prime. Answer: D.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Math Expert
Joined: 02 Sep 2009
Posts: 43363

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
25 Jan 2012, 04:10
7
This post received KUDOS
Expert's post
25
This post was BOOKMARKED
12. If \({\frac{1}{3}}\leq{x}\leq{\frac{1}{5}}\) and \({\frac{1}{2}}\leq{y}\leq{\frac{1}{4}}\), what is the least value of \(x^2*y\) possible?A. 1/100 B. 1/50 C. 1/36 D. 1/18 E. 1/6 To get the least value of \(x^2*y\), which obviously will be negative, try to maximize absolute value of \(x^2*y\), as more is the absolute value of a negative number "more" negative it is (the smallest it is). To maximize \(x^2*y\) pick largest absolute values possible for \(x\) and \(y\): \((\frac{1}{3})^2*(\frac{1}{2})=\frac{1}{18}\). Notice that: 1/18<1/36<1/50<1/100, so 1/100 is the largest number and 1/18 is the smallest number (we cannot obtain 1/6 from x^2*y or else it would be the correct answer). Answer: D.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Math Expert
Joined: 02 Sep 2009
Posts: 43363

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
25 Jan 2012, 04:39



Manager
Status: MBA Aspirant
Joined: 12 Jun 2010
Posts: 169
Location: India
Concentration: Finance, International Business
WE: Information Technology (Investment Banking)

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
25 Jan 2012, 21:00
Bunuel wrote: 5. The angles in a triangle are x, 3x, and 5x degrees. If a, b and c are the lengths of the sides opposite to angles x, 3x, and 5x respectively, then which of the following must be true? I. c>a+b II. c^2>a^2+b^2 III. c/a/b=10/6/2
A. I only B. II only C. III only D. I and III only E. II and III only
According to the relationship of the sides of a triangle: the length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides. Thus I and III can never be true: one side (c) can not be larger than the sum of the other two sides (a and b). Note that III is basically the same as I: if c=10, a=6 and b=2 then c>a+b, which can never be true. Thus even not considering the angles, we can say that only answer choice C (III only) is left.
Answer: C.
Now, if interested why III is true: as the angles in a triangle are x, 3x, and 5x degrees then x+3x+5x=180 > x=20, 3x=60, and 5x=100. Next, if angle opposite c were 90 degrees, then according to Pythagoras theorem c^2=a^+b^2, but since the angel opposite c is more than 90 degrees (100) then c is larger, hence c^2>a^+b^2. Bunnel: If I am correct you meant to say that II is the correct choice????



Math Expert
Joined: 02 Sep 2009
Posts: 43363

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
26 Jan 2012, 01:50
subhajeet wrote: Bunuel wrote: 5. The angles in a triangle are x, 3x, and 5x degrees. If a, b and c are the lengths of the sides opposite to angles x, 3x, and 5x respectively, then which of the following must be true? I. c>a+b II. c^2>a^2+b^2 III. c/a/b=10/6/2
A. I only B. II only C. III only D. I and III only E. II and III only
According to the relationship of the sides of a triangle: the length of any side of a triangle must be larger than the positive difference of the other two sides, but smaller than the sum of the other two sides. Thus I and III can never be true: one side (c) can not be larger than the sum of the other two sides (a and b). Note that III is basically the same as I: if c=10, a=6 and b=2 then c>a+b, which can never be true. Thus even not considering the angles, we can say that only answer choice B (II only) is left.
Answer: B.
Now, if interested why II is true: as the angles in a triangle are x, 3x, and 5x degrees then x+3x+5x=180 > x=20, 3x=60, and 5x=100. Next, if angle opposite c were 90 degrees, then according to Pythagoras theorem c^2=a^+b^2, but since the angel opposite c is more than 90 degrees (100) then c is larger, hence c^2>a^+b^2. Bunnel: If I am correct you meant to say that II is the correct choice???? Yes, correct choice is c^2>a^2+b^2, as explained, so B.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Status: MBA Aspirant
Joined: 12 Jun 2010
Posts: 169
Location: India
Concentration: Finance, International Business
WE: Information Technology (Investment Banking)

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
26 Jan 2012, 05:09
Got 3 answers wrong Bunnel thanks for the questions



Math Expert
Joined: 02 Sep 2009
Posts: 43363

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
26 Jan 2012, 05:11



Manager
Status: Preparing myself to break the sound( 700 )barrier!
Affiliations: IFC  Business Edge, Bangladesh Enterprise Institute
Joined: 15 Feb 2011
Posts: 207

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
26 Jan 2012, 22:47
Got only 8 correct out of 12 questions. The most shameful part is that all of my incorrect responses are related to easier problems than those problems that are given correct responses by me. Sometimes, I just dive into doing maths rather than using the wits. Learning from this series of questions: GIVE YOURSELF A FEW SECONDS OF REFLECTION TIME BEFORE YOU START SOLVING A QUANT PROBLEM. MAYBE, THE SOLUTION DOESN'T EVEN REQUIRE DOING MATH (e.g. Question#1)! Thank you, Bunuel, as always, for this series of questions.



Senior Manager
Joined: 12 Dec 2010
Posts: 277
Concentration: Strategy, General Management
GMAT 1: 680 Q49 V34 GMAT 2: 730 Q49 V41
GPA: 4
WE: Consulting (Other)

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
06 Apr 2012, 06:51
Bunuel wrote: 6. Anna has 10 marbles: 5 red, 2 blue, 2 green and 1 yellow. She wants to arrange all of them in a row so that no two adjacent marbles are of the same color and the first and the last marbles are of different colors. How many different arrangements are possible? A. 30 B. 60 C. 120 D. 240 E. 480 .... as there are two cases (R*R*R*R*R* and *R*R*R*R*R. ) then total # of arrangement is 30*2=60.
Answer: B. I am little confused ...after this bold part.. since we have 5 slots available to be filled by 5 marbles and we can pick any marbles given our setting of marbles (without disturbing any conditions in the stem ?). now # arrangements in either case is going to be 5! (=120) so total # arrangements = 2*120= 240... what am I missing here
_________________
My GMAT Journey 540>680>730!
~ When the going gets tough, the Tough gets going!



Math Expert
Joined: 02 Sep 2009
Posts: 43363

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
06 Apr 2012, 07:01
3
This post received KUDOS
Expert's post
4
This post was BOOKMARKED
yogesh1984 wrote: Bunuel wrote: 6. Anna has 10 marbles: 5 red, 2 blue, 2 green and 1 yellow. She wants to arrange all of them in a row so that no two adjacent marbles are of the same color and the first and the last marbles are of different colors. How many different arrangements are possible? A. 30 B. 60 C. 120 D. 240 E. 480 .... as there are two cases (R*R*R*R*R* and *R*R*R*R*R. ) then total # of arrangement is 30*2=60.
Answer: B. I am little confused ...after this bold part.. since we have 5 slots available to be filled by 5 marbles and we can pick any marbles given our setting of marbles (without disturbing any conditions in the stem ?). now # arrangements in either case is going to be 5! (=120) so total # arrangements = 2*120= 240... what am I missing here # of arrangements of 2 blue, 2 green and 1 yellow marbles (BBGGY) in 5 slots is 5!/(2!*2!*1!)=30 not 5!, since 2 B's and 2 G's are identical. THEORY. Permutations of \(n\) things of which \(P_1\) are alike of one kind, \(P_2\) are alike of second kind, \(P_3\) are alike of third kind ... \(P_r\) are alike of \(r_{th}\) kind such that: \(P_1+P_2+P_3+..+P_r=n\) is: \(\frac{n!}{P_1!*P_2!*P_3!*...*P_r!}\). For example number of permutation of the letters of the word "gmatclub" is \(8!\) as there are 8 DISTINCT letters in this word. Number of permutation of the letters of the word "google" is \(\frac{6!}{2!2!}\), as there are 6 letters out of which "g" and "o" are represented twice. Number of permutation of 9 balls out of which 4 are red, 3 green and 2 blue, would be \(\frac{9!}{4!3!2!}\). So, for our case # of permutations of 5 letters BBGGYout of which 2 B's and 2 G's are identical is \(\frac{5!}{2!*2!}\). Hope it's clear.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Joined: 12 Dec 2010
Posts: 277
Concentration: Strategy, General Management
GMAT 1: 680 Q49 V34 GMAT 2: 730 Q49 V41
GPA: 4
WE: Consulting (Other)

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
06 Apr 2012, 08:09
Bunuel wrote: yogesh1984 wrote: Bunuel wrote: 6. Anna has 10 marbles: 5 red, 2 blue, 2 green and 1 yellow. She wants to arrange all of them in a row so that no two adjacent marbles are of the same color and the first and the last marbles are of different colors. How many different arrangements are possible? A. 30 B. 60 C. 120 D. 240 E. 480 .... as there are two cases (R*R*R*R*R* and *R*R*R*R*R. ) then total # of arrangement is 30*2=60.
Answer: B. I am little confused ...after this bold part.. since we have 5 slots available to be filled by 5 marbles and we can pick any marbles given our setting of marbles (without disturbing any conditions in the stem ?). now # arrangements in either case is going to be 5! (=120) so total # arrangements = 2*120= 240... what am I missing here THEORY. Permutations of \(n\) things of which \(P_1\) are alike of one kind, \(P_2\) are alike of second kind, \(P_3\) are alike of third kind ... \(P_r\) are alike of \(r_{th}\) kind such that: \(P_1+P_2+P_3+..+P_r=n\) is: \(\frac{n!}{P_1!*P_2!*P_3!*...*P_r!}\). Hope it's clear. How can I do this feels like slapping myself ! anyway seems time to turn over to the basics. Thanks for the explanation mate
_________________
My GMAT Journey 540>680>730!
~ When the going gets tough, the Tough gets going!



Senior Manager
Joined: 28 Dec 2010
Posts: 321
Location: India

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
15 May 2012, 23:02
Bunuel a slightly different query, based on the difficulty level how much time would you give to solve these questions. Got Q no. 2 & 6 wrong!



Senior Manager
Joined: 28 Dec 2010
Posts: 321
Location: India

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
15 May 2012, 23:24
Bunuel wrote: 11. The numbers {1, 3, 6, 7, 7, 7} are used to form three 2digit numbers. If the sum of these three numbers is a prime number p, what is the largest possible value of p? A. 97 B. 151 C. 209 D. 211 E. 219
What is the largest possible sum of these three numbers that we can form? Maximize the first digit: 76+73+71=220=even, so not a prime. Let's try next largest sum, switch digits in 76 and we'll get: 67+73+71=211. Question is it a prime number? If you notice 210=2*3*5*7=the product of the first four primes. So, 210+1=211 must be a prime. For example: 2+1=3=prime, 2*3+1=7=prime, 2*3*5+1=31=prime.
Answer: D. Bunuel could you elaborate on the observation you presented. Is it that product of consecutive primes +1 is prime or is it something else?



Intern
Joined: 19 Feb 2012
Posts: 25
Location: India
Concentration: Technology, General Management
GPA: 3.36
WE: Analyst (Computer Software)

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
17 May 2012, 01:22
good work pal keep them comming....



Intern
Joined: 19 Feb 2012
Posts: 25
Location: India
Concentration: Technology, General Management
GPA: 3.36
WE: Analyst (Computer Software)

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
17 May 2012, 01:23
i wonder if any one got all 12 right....



Intern
Joined: 19 Feb 2012
Posts: 25
Location: India
Concentration: Technology, General Management
GPA: 3.36
WE: Analyst (Computer Software)

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
17 May 2012, 01:56
the answers given are not in order...



Intern
Joined: 25 Jun 2011
Posts: 47
Location: Sydney

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
14 Jul 2012, 14:56
Bunuel wrote: SOLUTIONS:
Notice that most of the problems have short, easy and elegant solutions, since you've noticed a trick/trap hidden in the questions.
1. There are 5 pairs of white, 3 pairs of black and 2 pairs of grey socks in a drawer. If four socks are picked at random what is the probability of getting two socks of the same color? A. 1/5 B. 2/5 C. 3/4 D. 4/5 E. 1
No formula is need to answer this one. The trick here is that we have only 3 different color socks but we pick 4 socks, which ensures that in ANY case we'll have at least one pair of the same color (if 3 socks we pick are of the different color, then the 4th sock must match with either of previously picked one). P=1.
Answer: E. But what if all three chosen pair of socks were of the white color? I think it's possible as there are 5 pairs of white socks. Sorry I don't really understand how the probability is 1 here.



Math Expert
Joined: 02 Sep 2009
Posts: 43363

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
15 Jul 2012, 04:09
dianamao wrote: Bunuel wrote: SOLUTIONS:
Notice that most of the problems have short, easy and elegant solutions, since you've noticed a trick/trap hidden in the questions.
1. There are 5 pairs of white, 3 pairs of black and 2 pairs of grey socks in a drawer. If four socks are picked at random what is the probability of getting two socks of the same color? A. 1/5 B. 2/5 C. 3/4 D. 4/5 E. 1
No formula is need to answer this one. The trick here is that we have only 3 different color socks but we pick 4 socks, which ensures that in ANY case we'll have at least one pair of the same color (if 3 socks we pick are of the different color, then the 4th sock must match with either of previously picked one). P=1.
Answer: E. But what if all three chosen pair of socks were of the white color? I think it's possible as there are 5 pairs of white socks. Sorry I don't really understand how the probability is 1 here. First of all, we are not choosing 4 PAIRS of socks, we are choosing 4 socks. Next, I think you didn't understand the question properly: the question asks "what is the probability of getting two socks of the same color?" Now, ask yourself: can we choose 4 socks, so that not to have two socks of the same color? Can we choose 4 socks of different colors? Since there are only 3 colors, then the answer is NO, hence the probability of getting two socks of the same color is 100% or 1. Hope it's clear.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 16 Feb 2011
Posts: 195
Schools: ABCD

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
08 Aug 2012, 05:54
Bunuel wrote: SOLUTIONS:
Notice that most of the problems have short, easy and elegant solutions, since you've noticed a trick/trap hidden in the questions.
1. There are 5 pairs of white, 3 pairs of black and 2 pairs of grey socks in a drawer. If four socks are picked at random what is the probability of getting two socks of the same color? A. 1/5 B. 2/5 C. 3/4 D. 4/5 E. 1
No formula is need to answer this one. The trick here is that we have only 3 different color socks but we pick 4 socks, which ensures that in ANY case we'll have at least one pair of the same color (if 3 socks we pick are of the different color, then the 4th sock must match with either of previously picked one). P=1.
Answer: E. Bunuel, I agree with your explanation, but I thought of solving this using the algebraic method, just to test my understanding. Here's what I did long method) : 10 = number of blue socks (5*2) 6 = number of black socks (3*2) 4 = number of grey socks (2*2) 10C2 {6C1 * 2C1 + 6C2 + 2C2} + 6C2*(2C2 + 10C1*2C1) + 2C2*6C1*10C1  20C4 {Quick explanation  First parenthesis => Choose two blue socks, and then I could choose two grey, or two black or 1 black and 1 grey} Similarly second parenthesis => Choose two black socks, and then I could choose two grey, or 1 blue and 1 grey; I have already chosen two black and two blue in the first parenthesis; Third parenthesis => Choose two grey, 1 black and 1 blue; I have already chosen two grey+two blue AND two grey+two black)} 45*{12+15+1} + 15{1+20} + 60 =  4845 1260 + 315 + 60 =  4845 is not equal to 1! Why?



Intern
Joined: 18 Feb 2012
Posts: 4

Re: 12 Easy Pieces (or not?) [#permalink]
Show Tags
16 Aug 2012, 09:48
Bunuel wrote: Now, ask yourself: can we choose 4 socks, so that not to have two socks of the same color? Can we choose 4 socks of different colors? Since there are only 3 colors, then the answer is NO, hence the probability of getting two socks of the same color is 100% or 1.
Hope it's clear.
Bunuel, these are 700+ questions? Do you know their difficulty level?




Re: 12 Easy Pieces (or not?)
[#permalink]
16 Aug 2012, 09:48



Go to page
Previous
1 2 3 4 5 6 7 8 9
Next
[ 167 posts ]



