GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 10 Dec 2018, 12:08

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • Free lesson on number properties

     December 10, 2018

     December 10, 2018

     10:00 PM PST

     11:00 PM PST

    Practice the one most important Quant section - Integer properties, and rapidly improve your skills.
  • Free GMAT Prep Hour

     December 11, 2018

     December 11, 2018

     09:00 PM EST

     10:00 PM EST

    Strategies and techniques for approaching featured GMAT topics. December 11 at 9 PM EST.

Does integer n have 2 factors x & y such that 1 < x < y < n?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Senior Manager
Senior Manager
User avatar
Joined: 21 Oct 2013
Posts: 419
Does integer n have 2 factors x & y such that 1 < x < y < n?  [#permalink]

Show Tags

New post 13 Jan 2014, 03:57
2
5
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

61% (01:49) correct 39% (01:49) wrong based on 271 sessions

HideShow timer Statistics

Does the integer n have two factors, x and y, such that 1 < x < y < n?

(1) 3! < n < 4!
(2) n is odd and a multiple of 3.

OE
(1): 3! < n < 4! → 6 < n < 24. Every even integer can be expressed as a multiple of 2, all even numbers in range will give us a "yes" to question.
However, since primes are in range (7, 11, 13, 17, 19, 23), that cannot be factored further than itself, we can also answer question "no."
If n = 8, it has 2 integer factors 2 and 4 that fit criteria: 1 < 2 < 4 < 8 → "yes"
If n = 7, it cannot be broken down into factors that fit criteria of question → "no"
Insufficient
(2): Any positive, odd multiple of 3 is a possible value for n. For larger multiples of 3, we can easily fit criteria, giving "yes" answer. However, since any number’s smallest multiple is itself, 3 is a possible value for n that would not fit criteria, giving "no."
If n = 15, we can factor it as 3 and 5, and we fit criteria: 1< 3 < 5 < 15 → "yes"
If n = 9, we can only factor it as 3 and 3, which does not fit criteria → "no"
Insufficient
Combined: (1) limits possible values of n to those integers between 6 and 24. (2) adds limitation that n be odd multiple of 3. Possible values for n = (9, 15 and 21)
If n = 9, we answer question "no,"
If n = 15 or 21, we can answer question "yes."
Insufficient


Hi, I want to know if we have more simple solution for this question, please.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51072
Does integer n have 2 factors x & y such that 1 < x < y < n?  [#permalink]

Show Tags

New post 13 Jan 2014, 05:31
goodyear2013 wrote:
Does the integer n have two factors, x and y, such that 1 < x < y < n?

(1) 3! < n < 4!
(2) n is odd and a multiple of 3.

OE
(1): 3! < n < 4! → 6 < n < 24. Every even integer can be expressed as a multiple of 2, all even numbers in range will give us a "yes" to question.
However, since primes are in range (7, 11, 13, 17, 19, 23), that cannot be factored further than itself, we can also answer question "no."
If n = 8, it has 2 integer factors 2 and 4 that fit criteria: 1 < 2 < 4 < 8 → "yes"
If n = 7, it cannot be broken down into factors that fit criteria of question → "no"
Insufficient
(2): Any positive, odd multiple of 3 is a possible value for n. For larger multiples of 3, we can easily fit criteria, giving "yes" answer. However, since any number’s smallest multiple is itself, 3 is a possible value for n that would not fit criteria, giving "no."
If n = 15, we can factor it as 3 and 5, and we fit criteria: 1< 3 < 5 < 15 → "yes"
If n = 9, we can only factor it as 3 and 3, which does not fit criteria → "no"
Insufficient
Combined: (1) limits possible values of n to those integers between 6 and 24. (2) adds limitation that n be odd multiple of 3. Possible values for n = (9, 15 and 21)
If n = 9, we answer question "no,"
If n = 15 or 21, we can answer question "yes."
Insufficient


Hi, I want to know if we have more simple solution for this question, please.


Does the integer n have two factors, x and y, such that 1 < x < y < n?

(1) 3! < n < 4! --> 6 < n < 24 --> If n=7=prime, then the answer is NO but if n=10, then the answer is YES. Not sufficient.

(2) n is odd and a multiple of 3. If n=3=prime, then the answer is NO but if n=15, then the answer is YES. Not sufficient.

(1)+(2) The same here: n=9=3^2 gives a NO answer, while n=15=3*5 gives an YES answer. Not sufficient.

Answer: E.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51072
Re: Does integer n have 2 factors x & y such that 1 < x < y < n?  [#permalink]

Show Tags

New post 13 Jan 2014, 05:32
1
Bunuel wrote:
goodyear2013 wrote:
Does the integer n have two factors, x and y, such that 1 < x < y < n?

(1) 3! < n < 4!
(2) n is odd and a multiple of 3.

OE
(1): 3! < n < 4! → 6 < n < 24. Every even integer can be expressed as a multiple of 2, all even numbers in range will give us a "yes" to question.
However, since primes are in range (7, 11, 13, 17, 19, 23), that cannot be factored further than itself, we can also answer question "no."
If n = 8, it has 2 integer factors 2 and 4 that fit criteria: 1 < 2 < 4 < 8 → "yes"
If n = 7, it cannot be broken down into factors that fit criteria of question → "no"
Insufficient
(2): Any positive, odd multiple of 3 is a possible value for n. For larger multiples of 3, we can easily fit criteria, giving "yes" answer. However, since any number’s smallest multiple is itself, 3 is a possible value for n that would not fit criteria, giving "no."
If n = 15, we can factor it as 3 and 5, and we fit criteria: 1< 3 < 5 < 15 → "yes"
If n = 9, we can only factor it as 3 and 3, which does not fit criteria → "no"
Insufficient
Combined: (1) limits possible values of n to those integers between 6 and 24. (2) adds limitation that n be odd multiple of 3. Possible values for n = (9, 15 and 21)
If n = 9, we answer question "no,"
If n = 15 or 21, we can answer question "yes."
Insufficient


Hi, I want to know if we have more simple solution for this question, please.


Does the integer n have two factors, x and y, such that 1 < x < y < n?

(1) 3! < n < 4! --> 6 < n < 24 --> If n=7=prime, then the answer is NO but if n=10, then the answer is YES. Not sufficient.

(2) n is odd and a multiple of 3. If n=3=prime, then the answer is NO but if n=6, then the answer is YES. Not sufficient.

(1)+(2) The same here: n=9=3^2 gives a NO answer, while n=15=3*5 gives an YES answer. Not sufficient.

Answer: E.


Similar questions:
does-the-integer-k-have-a-factor-p-such-that-1-p-k-126735.html
if-x-is-an-integer-does-x-have-a-factor-n-such-that-100670.html
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8656
Location: Pune, India
Does integer n have 2 factors x & y such that 1 < x < y < n?  [#permalink]

Show Tags

New post 17 Mar 2015, 21:21
2
1
goodyear2013 wrote:
Does the integer n have two factors, x and y, such that 1 < x < y < n?

(1) 3! < n < 4!
(2) n is odd and a multiple of 3.



The question is not difficult if you understand the theory of factors properly.

Does n have two factors x and y such that x and y lie between 1 and n and are distinct?
When does a number have factors between 1 and itself? When it is a composite (not a prime) number. Every composite number has a factor in between 1 and itself.
When will the factors be distinct i.e. when does the number have more than 1 factors? When it is not a perfect square or a prime number. A perfect square of a prime number such as 4 has only 1 factor between 1 and itself (1, 2, 4).

So we want two things in our n : It should not be prime and it should not be square of a prime number.

(1) 3! < n < 4!
This means 6 < n < 24
If n is 7, it is prime. It has no x and y.
If it is 8 it is not a prime and not a square of a prime. It has x and y.
Not sufficient

(2) n is odd and a multiple of 3.
If n is 3, it is prime. It has no x and y.
If it is 15, it is not a prime and not a square of a prime. It has x and y.
Not sufficient

Using both, n could be 9/12/15 etc
9 is the square of a prime. It has no x and y.
12 is not a prime and not the square of a prime. It has x and y.
Not sufficient.

Answer (E)
_________________

[b]Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Current Student
User avatar
D
Joined: 12 Aug 2015
Posts: 2630
Schools: Boston U '20 (M)
GRE 1: Q169 V154
GMAT ToolKit User Premium Member
Re: Does integer n have 2 factors x & y such that 1 < x < y < n?  [#permalink]

Show Tags

New post 15 Mar 2016, 09:36
Here we are asked whether n has more than two factors excluding 1 and n such that 1 < x < y < n
now statement 1 => n=> 96,24)
for 7=> NO
for 20=> YES
hence not sufficient
Statement 2 => N=3 => NO
N= 9=> No
N= 27 => YES
hence Not sufficient
Combining them N=> 9=> NO
N= 18 => YES
hence E
_________________


MBA Financing:- INDIAN PUBLIC BANKS vs PRODIGY FINANCE!

Getting into HOLLYWOOD with an MBA!

The MOST AFFORDABLE MBA programs!

STONECOLD's BRUTAL Mock Tests for GMAT-Quant(700+)

AVERAGE GRE Scores At The Top Business Schools!

Manager
Manager
avatar
S
Joined: 21 Oct 2017
Posts: 81
Location: France
Concentration: Entrepreneurship, Technology
GMAT 1: 750 Q48 V44
GPA: 4
WE: Project Management (Internet and New Media)
Re: Does integer n have 2 factors x & y such that 1 < x < y < n?  [#permalink]

Show Tags

New post 02 Dec 2017, 14:09
Hi VeritasPrepKarishma,

Could you please clarify the highlighted part below about statement 2? I must not be understanding what the condition "n is odd" implies. I thought it could only be 3-9-15-21, but not 6-12-18, etc.

Thanks!

(2) n is odd and a multiple of 3.
If n is 3, it is prime. It has no x and y.
If it is 6 it is not a prime and not a square of a prime. It has x and y.
Not sufficient

VeritasPrepKarishma wrote:
goodyear2013 wrote:
Does the integer n have two factors, x and y, such that 1 < x < y < n?

(1) 3! < n < 4!
(2) n is odd and a multiple of 3.



The question is not difficult if you understand the theory of factors properly.

Does n have two factors x and y such that x and y lie between 1 and n and are distinct?
When does a number have factors between 1 and itself? When it is a composite (not a prime) number. Every composite number has a factor in between 1 and itself.
When will the factors be distinct i.e. when does the number have more than 1 factors? When it is not a perfect square or a prime number. A perfect square of a prime number such as 4 has only 1 factor between 1 and itself (1, 2, 4).

So we want two things in our n : It should not be prime and it should not be square of a prime number.

(1) 3! < n < 4!
This means 6 < n < 24
If n is 7, it is prime. It has no x and y.
If it is 8 it is not a prime and not a square of a prime. It has x and y.
Not sufficient

(2) n is odd and a multiple of 3.
If n is 3, it is prime. It has no x and y.
If it is 6 it is not a prime and not a square of a prime. It has x and y.
Not sufficient

Using both, n could be 9/12/15 etc
9 is the square of a prime. It has no x and y.
12 is not a prime and not the square of a prime. It has x and y.
Not sufficient.

Answer (E)

_________________

Please Press +1 Kudos if it helps!

October 9th, 2017: Diagnostic Exam - Admit Master (GoGMAT) - 640
November 11th, 2017: CAT 1 - Admit Master (GoGMAT) - 700
November 20th, 2017: CAT 2 - GMATPrep - 700 (Q: 47, V: 40)
November 25th, 2017: CAT 3 - Admit Master (GoGMAT) - 710 (Q: 48, V: 40)
November 27th, 2017: CAT 4 - GMATPrep - 720 (Q: 49, V: 40)

December 4th, 2017: GMAT Exam - 750 (Q: 48, V: 44, IR: 8, AWA: 6)

Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8656
Location: Pune, India
Re: Does integer n have 2 factors x & y such that 1 < x < y < n?  [#permalink]

Show Tags

New post 03 Dec 2017, 23:21
Hadrienlbb wrote:
Hi VeritasPrepKarishma,

Could you please clarify the highlighted part below about statement 2? I must not be understanding what the condition "n is odd" implies. I thought it could only be 3-9-15-21, but not 6-12-18, etc.

Thanks!

(2) n is odd and a multiple of 3.
If n is 3, it is prime. It has no x and y.
If it is 6 it is not a prime and not a square of a prime. It has x and y.
Not sufficient

VeritasPrepKarishma wrote:
goodyear2013 wrote:
Does the integer n have two factors, x and y, such that 1 < x < y < n?

(1) 3! < n < 4!
(2) n is odd and a multiple of 3.



The question is not difficult if you understand the theory of factors properly.

Does n have two factors x and y such that x and y lie between 1 and n and are distinct?
When does a number have factors between 1 and itself? When it is a composite (not a prime) number. Every composite number has a factor in between 1 and itself.
When will the factors be distinct i.e. when does the number have more than 1 factors? When it is not a perfect square or a prime number. A perfect square of a prime number such as 4 has only 1 factor between 1 and itself (1, 2, 4).

So we want two things in our n : It should not be prime and it should not be square of a prime number.

(1) 3! < n < 4!
This means 6 < n < 24
If n is 7, it is prime. It has no x and y.
If it is 8 it is not a prime and not a square of a prime. It has x and y.
Not sufficient

(2) n is odd and a multiple of 3.
If n is 3, it is prime. It has no x and y.
If it is 6 it is not a prime and not a square of a prime. It has x and y.
Not sufficient

Using both, n could be 9/12/15 etc
9 is the square of a prime. It has no x and y.
12 is not a prime and not the square of a prime. It has x and y.
Not sufficient.

Answer (E)


Yes, you are right. Consider only the odd multiples. n = 15 will have x and y.
Edited.
_________________

[b]Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

GMAT Club Bot
Re: Does integer n have 2 factors x & y such that 1 < x < y < n? &nbs [#permalink] 03 Dec 2017, 23:21
Display posts from previous: Sort by

Does integer n have 2 factors x & y such that 1 < x < y < n?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.