GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 23 Apr 2019, 03:07

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Find the sum of the first 15 terms of the series whose nth

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Intern
Intern
avatar
Joined: 22 Sep 2011
Posts: 28
GMAT ToolKit User
Find the sum of the first 15 terms of the series whose nth  [#permalink]

Show Tags

New post Updated on: 30 Oct 2013, 02:54
2
4
00:00
A
B
C
D
E

Difficulty:

(N/A)

Question Stats:

76% (01:46) correct 24% (01:55) wrong based on 142 sessions

HideShow timer Statistics

Find the sum of the first 15 terms of the series whose nth term is (4n+1).

A. 485
B. 495
C. 505
D. 630

Originally posted by jrymbei on 14 Oct 2013, 09:34.
Last edited by Bunuel on 30 Oct 2013, 02:54, edited 2 times in total.
Renamed the topic and edited the question.
Most Helpful Community Reply
Verbal Forum Moderator
User avatar
B
Joined: 10 Oct 2012
Posts: 611
Re: Find the sum of the first 15 terms of the series whose nth  [#permalink]

Show Tags

New post 14 Oct 2013, 09:42
3
2
jrymbei wrote:
Find the sum of the first 15 terms of the series whose nth term is (4n+1).

A. 485
B. 495
C. 505
D. 630


Note - I am clueless about this question.


First term : 4*1+1 = 5.

15th term : 4*15+1= 61

Sum of 15 terms : \(\frac{No of terms*(first term + last term)}{2} = \frac{15*(61+5)}{2} = 495.\)

B.
_________________
General Discussion
Intern
Intern
avatar
Joined: 22 Sep 2011
Posts: 28
GMAT ToolKit User
Re: Find the sum of the first 15 terms of the series whose nth  [#permalink]

Show Tags

New post 14 Oct 2013, 12:07
Thanks for the explanation...it was so simple!!!
Intern
Intern
avatar
Joined: 14 Dec 2011
Posts: 16
Location: India
Concentration: Technology, Nonprofit
GMAT 1: 640 Q48 V29
GMAT 2: 660 Q45 V35
GPA: 3.5
WE: Information Technology (Computer Software)
Re: Find the sum of the first 15 terms of the series whose nth  [#permalink]

Show Tags

New post 30 Oct 2013, 02:53
jrymbei wrote:
Find the sum of the first 15 terms of the series whose nth term is (4n+1).

A. 485
B. 495
C. 505
D. 630


Note - I am clueless about this question.


Formula used: Sum of n terms = Average (First and Last term) * Number of terms.

First term : n=1, (4*1+1) = 5
Last term : n=15, (4*15 + 1) = 61

Sum = (5+61)/2 * 15 = 495. Answer B.
Intern
Intern
avatar
B
Joined: 01 Feb 2015
Posts: 4
Find the sum of the first 15 terms of the series whose nth  [#permalink]

Show Tags

New post 26 Mar 2015, 22:30
Its probably obvious.. but can someone explain why the formula for a arithmetic series is used here ... Sum of series n = (n/2)(A1 - An) ... as opposed to the formula for a geometric series ... Sum of series n = [A1*(1-r^n)]/(1-r) where r is the common ratio and n is the nth term.

I understand the solution but am confused by the formula thinking that An=4n+1 is a geometric sequence given that you have to multiply by 4 to get the next term in the sequence. Appreciate your reply!!

THANKS!
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 54462
Re: Find the sum of the first 15 terms of the series whose nth  [#permalink]

Show Tags

New post 27 Mar 2015, 04:31
sisorayi01 wrote:
Its probably obvious.. but can someone explain why the formula for a arithmetic series is used here ... Sum of series n = (n/2)(A1 - An) ... as opposed to the formula for a geometric series ... Sum of series n = [A1*(1-r^n)]/(1-r) where r is the common ratio and n is the nth term.

I understand the solution but am confused by the formula thinking that An=4n+1 is a geometric sequence given that you have to multiply by 4 to get the next term in the sequence. Appreciate your reply!!

THANKS!


The sequence is define by \(a_n=4n+1\), thus:

\(a_1=4*1+1=5\);
\(a_2=4*2+1=9\);
\(a_3=4*3+1=13\);
\(a_4=4*4+1=17\);
...

As you can see the sequence we have (5, 9, 13, 17, ...) is an arithmetic progression, not geometric.
_________________
Intern
Intern
avatar
Joined: 17 Feb 2015
Posts: 27
GPA: 3
Reviews Badge
Re: Find the sum of the first 15 terms of the series whose nth  [#permalink]

Show Tags

New post 27 Mar 2015, 05:24
sisorayi01 wrote:
Its probably obvious.. but can someone explain why the formula for a arithmetic series is used here ... Sum of series n = (n/2)(A1 - An) ... as opposed to the formula for a geometric series ... Sum of series n = [A1*(1-r^n)]/(1-r) where r is the common ratio and n is the nth term.

I understand the solution but am confused by the formula thinking that An=4n+1 is a geometric sequence given that you have to multiply by 4 to get the next term in the sequence. Appreciate your reply!!

THANKS!


Adding to what Bunuel just posted, a geometric series would look like following
An = 4^n
And the series would look something like 4, 16, 64, 256, 1024, ...
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 10602
Re: Find the sum of the first 15 terms of the series whose nth  [#permalink]

Show Tags

New post 24 Jul 2017, 01:28
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: Find the sum of the first 15 terms of the series whose nth   [#permalink] 24 Jul 2017, 01:28
Display posts from previous: Sort by

Find the sum of the first 15 terms of the series whose nth

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.