Last visit was: 18 Nov 2025, 22:29 It is currently 18 Nov 2025, 22:29
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Punt
Joined: 09 Jul 2024
Last visit: 11 Nov 2025
Posts: 36
Own Kudos:
29
 [1]
Given Kudos: 15
Location: India
Posts: 36
Kudos: 29
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
andreagonzalez2k
Joined: 15 Feb 2021
Last visit: 26 Jul 2025
Posts: 308
Own Kudos:
497
 [1]
Given Kudos: 14
Posts: 308
Kudos: 497
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Aarushi100
Joined: 17 Jul 2024
Last visit: 18 Nov 2025
Posts: 56
Own Kudos:
44
 [1]
Given Kudos: 88
Products:
Posts: 56
Kudos: 44
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
SaKVSF16
Joined: 31 May 2024
Last visit: 18 Nov 2025
Posts: 86
Own Kudos:
79
 [1]
Given Kudos: 41
Products:
Posts: 86
Kudos: 79
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Let total miles = \(5 + n\), n could be 0 if only 5 miles were covered
then Total cost = \(p + 0.1pn \)
To find if 5+n > 30

So basically to find if \(n> 25\), given that Total cost = \(p + 0.1pn \)

(1) The moving service charged a total of 3.3p dollars for the trip.
\( 3.3p = p + 0.1pn \)
\( 2.3p = 0.1pn \)
\( n = 23 \)

So since n = 23, n is not greater than 25, which is what we needed to find. We have our answer.
Statement 1 is sufficient


(2) The moving service charged a total of $132 for the trip.

here we are given total cost and we need to find if n>25 or n< 25. We have constraint of p >30

Let us assume n = 20 and n= 30 and try to see if we get p>30 in both cases

for n=20
\( 132 = p + 0.1p*20 \)
\( 132 = 3p \)
\( p = 44 \) which is more than 30 so n=20 is possible

for n=30
\( 132 = p + 0.1p*30 \)
\( 132 = 4p \)
\( p = 33 \) which is more than 30 so n=30 is also possible

both n=20 and n=30 meet the constraints and p>30 in both cases. so we can't say for sure if total miles covered is more than or less than 30, since n can be less than 25 or more than 25
Statement 2 is not sufficient

Answer is A
User avatar
SSWTtoKellogg
Joined: 06 Mar 2024
Last visit: 18 Nov 2025
Posts: 57
Own Kudos:
35
 [1]
Given Kudos: 14
Location: India
GMAT Focus 1: 595 Q83 V78 DI77
GMAT Focus 2: 645 Q87 V79 DI79
GPA: 8.8
Products:
GMAT Focus 2: 645 Q87 V79 DI79
Posts: 57
Kudos: 35
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
S1 : With minimal 30+ the, answer is more than 3.3p, then the answer is no. [S]
S2 : Can't say, yes or no. [NS]

A
User avatar
IIIJOHNNYSIII
Joined: 10 Aug 2023
Last visit: 13 Nov 2025
Posts: 85
Own Kudos:
53
 [1]
Given Kudos: 15
Location: India
Posts: 85
Kudos: 53
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
It is given that it is p dollars for the first \(5\) miles
It also mentions additional charge of \(0.1*p\) dollar for an extra mile or a fraction of a mile
Question : If \(p > 30,\) was a particular trip more than 30 miles long?

Considering statement 1,
The moving service charged a total of \(3.3p\) dollars for the trip.
Here we can form the equation, \(5 + 0.1p*(m-1) = 3.3p\); \(m\) is the distance traveled.
From this on substituting any value for \(p\) we can find the corresponding value of m is always > 30; This statement is sufficient.

Considering statement 2,
The moving service charged a total of $132 for the trip.
Here to identify the problem we can form a similar equation,
\(5 + 0.1p*(m-1) = 132\); unlike the previous statement here does not depend on the value of p and is a constant.
Therefore for higher values of \(p\), \(m<30\) and for \(p = 30 \), \(m>30\); Not sufficient

Therefore the correct option is Option A
User avatar
Aishna1034
Joined: 21 Feb 2023
Last visit: 18 Nov 2025
Posts: 218
Own Kudos:
64
 [1]
Given Kudos: 150
Products:
Posts: 218
Kudos: 64
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
A. Forming an eqn: p+ 0.1p( x) = charge, X here is the extra miles taken.
1: p+ 0.1p(x)= 3.3p
x=23 miles, 5 miles travelled before, hence total =28 , which is less than 30. Sufficient.
2: putting values:
p+0.1p(x)= 132
p>30 given, if you put values such as 31, 32, 33, it can go till any no. values will differe, sometimes greater than 30 miles, other times not. Hence, not sufficient.
Bunuel
Quote:
A moving service charges p dollars for the first 5 miles of any trip plus 0.1*p dollars for each additional mile or fraction of a mile. If p > 30, was a particular trip more than 30 miles long?

(1) The moving service charged a total of 3.3p dollars for the trip.
(2) The moving service charged a total of $132 for the trip.


 


This question was provided by Experts' Global
for the GMAT Olympics 2025

Win over $30,000 in prizes such as Courses, Admissions Consulting, and more

 

User avatar
twinkle2311
Joined: 05 Nov 2021
Last visit: 18 Nov 2025
Posts: 150
Own Kudos:
167
 [1]
Given Kudos: 10
Location: India
Concentration: Finance, Real Estate
GPA: 9.041
Posts: 150
Kudos: 167
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
cost = p for first 5 miles + 0.1 p for each extra mile (or part of one).
Let m be the number of extra miles. (rounded up).
Total cost = p(1 + 0.1 m).
Trip > 30 miles , that means extra miles m >= 26.
cost/p ≥ 1 + 0.1*26 = 3.6

Statement 1 : cost = 3.3 p
-> cost/p = 3.3 < 3.6
-> m = 23
-> Total Trip <= 28 miles which is < 30.
Sufficient.

Statement 2 : cost = $132
-> cost/p = 132/p. We only know p > 30.
-> If p = 32, 132/32 = 4.125 >= 3.6 -> trip > 30
-> If p = 40, 132/40 = 3.3 < 3.6 -> trip <= 28
Insufficient.

Answer: A
User avatar
GMAT2point0
Joined: 07 May 2025
Last visit: 18 Nov 2025
Posts: 31
Own Kudos:
12
 [1]
Given Kudos: 96
Posts: 31
Kudos: 12
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If m is the number of miles, total cost for a trip is p + 0.1*p*m

Statement 1 tells us that the cost was 3.3p
From this, p is the cost of the first mile, so the remaining 2.3p = 0.1*p*m
We can solve this equation and get a value for m. So the statement is sufficient.

Statement 2 says the total cost was $132
Given in q.stem -> p>30
Case 1 - keep value of p as 31 and solve for m
Case 2 - keep value of p as 60 and solve for m
One case gives value of m below 30 and one gives above 30
Hence, not sufficient
User avatar
Aashimabhatia
Joined: 29 Aug 2024
Last visit: 15 Nov 2025
Posts: 46
Own Kudos:
25
 [1]
Given Kudos: 655
Posts: 46
Kudos: 25
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
We’re told the service charges p dollars for the first 5 miles and 0.1p per additional mile, and we’re asked whether a trip was more than 30 miles long.
Statement (1) tells us the total charge was 3.3p, so subtracting the initial p, the remaining 2.3p must be from extra miles, dividing by 0.1p per mile gives 23 additional miles, meaning the total trip was 28 miles, so not more than 30 → sufficient.
Statement (2) says the total cost was $132, but without knowing p (only that p > 30), we can’t determine how many miles that amount covers—it could correspond to trips shorter or longer than 30 miles depending on the value of p-so insufficient.
Answer: A.
User avatar
UfuomaOh
Joined: 14 Sep 2023
Last visit: 17 Nov 2025
Posts: 83
Own Kudos:
50
 [1]
Given Kudos: 14
Products:
Posts: 83
Kudos: 50
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
A moving service charges p dollars for the first 5 miles of any trip plus 0.1*p dollars for each additional mile or fraction of a mile. If p > 30, was a particular trip more than 30 miles long?

(1) The moving service charged a total of 3.3p dollars for the trip.
(2) The moving service charged a total of $132 for the trip.

We know that if m< 5 then C=p
If m>5 then C=P+0.1p *(m-5)

Let m-5= d
if m> 5 C= P+0.1p*d

Statement 1
C=3.3p
we know if m<5, c=p
Thus m>5, so C= P+0.1p*d

3.3p=P+0.1p*d

2.3p=0.1p*d
Divide both sides by p
2.3=0.1d
d= 23
Given that d= m-5
m=28
28<30
Hence statement 1 is sufficient

Statement 2
C=132
if m<5 then p=132
if m>5, then C=P+0.1p*d
132=P+0.1p*d

there are 2 unknowns in this equation. In order to get d we have to solve for P. Thus statement 2 is insufficient. Therefore statement 1 alone is sufficient.
User avatar
SaanjK26
Joined: 08 Oct 2022
Last visit: 18 Nov 2025
Posts: 77
Own Kudos:
63
 [1]
Given Kudos: 69
Location: India
Posts: 77
Kudos: 63
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Statement (1): Sufficient

The total charge is 3.3p, so 3.3 = 0.5 + 0.1x, giving x = 28 miles. Since 28 < 30, the trip was not more than 30 miles. Statement (1) alone is sufficient.

Statement (2): Insufficient
The total charge is 132 dollars, so 132 = p(0.5 + 0.1x). Without knowing p (only that p > 30), x cannot be uniquely determined and could be less or more than 30.
Statement (2) alone is not sufficient.

(A) Statement (1) alone is sufficient, but statement (2) alone is not sufficient.
User avatar
LastHero
Joined: 15 Dec 2024
Last visit: 11 Nov 2025
Posts: 134
Own Kudos:
147
 [1]
Given Kudos: 1
Posts: 134
Kudos: 147
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
(1)
3.3p=p+(distance-5)*0.1*p=(1+0.1*distance-0.5)*p=(0.5+0.1*distance)*p=(5+distance)*p/10
33=5+distance
distance=28

distance is beetween 27 miles (not included) and 28 miles (included)

Statement is sufficient

(2)
132=(5+distance)*p/10

if p=66, distance=15 and the answer is no
if p=33, distance=35 and the answer is yes

Statement is insufficient

The right answer is A
User avatar
Rahilgaur
Joined: 24 Jun 2024
Last visit: 18 Nov 2025
Posts: 103
Own Kudos:
Given Kudos: 45
GMAT Focus 1: 575 Q81 V82 DI72
Products:
GMAT Focus 1: 575 Q81 V82 DI72
Posts: 103
Kudos: 74
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
A moving service charges p dollars for the first 5 miles of any trip plus 0.1*p dollars for each additional mile or fraction of a mile. If p > 30, was a particular trip more than 30 miles long?

(1) The moving service charged a total of 3.3p dollars for the trip.
(2) The moving service charged a total of $132 for the trip.


 


This question was provided by Experts' Global
for the GMAT Olympics 2025

Win over $30,000 in prizes such as Courses, Admissions Consulting, and more

 

Let’s consider the length of trip = x miles.
Cost = p+(x-5)*0.1*p dollars.......1
Is x >30 miles ?
1. Total charge = 3.3p
On equating with 1[sup]st[/sup] -à 3.3p = p+(x-5)*0.1*p
3.3=x*0.1 - 0.1*5 +1
X*0.1 = 2.3+0.5
X= 28 miles .. we can’t find p —Insuffiecient
2. 132 = p+(x-5)*0.1*p .........2 variables not sufficient...

Combining two ----3.3p=132 dollars
P=1320/33= 120/3=40.....p>30.....x=28 miles < 30 ....Answer is No

1 and 2 are Sufficentà C answer
User avatar
crimson_king
Joined: 21 Dec 2023
Last visit: 18 Nov 2025
Posts: 127
Own Kudos:
131
 [1]
Given Kudos: 103
GRE 1: Q170 V170
GRE 1: Q170 V170
Posts: 127
Kudos: 131
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Let’s model the total cost:

Let the total trip be d miles.

If : cost = p (d less than 5 miles)
If d>5

Additional Cost = 0.1*p*(d-5)


Total cost = p+0.1*p*(d-5)



Statement (1):

The total charge was 3.3p

Let’s find the number of miles that result in a total cost of 3.3p:

Total cost = p + 0.1p* (d-5)= 3.3p

2.3p= 0.1 p*(d-5)
d=28

This means the trip was less than or equal to 28 miles.

So the trip was not more than 30 miles.

Statement (1) is sufficient.



Statement (2):

> The total charge was $132



We’re also told , but no value is specified.

So we now have:

132 = p + 0.1p*(d-5)

Rewriting:
Assuming d-5 as p
132 = p(1 + 0.1m)
132/p-1=0.1*m
m=10(132/p-1)

If we put p as 40 we get the value of m as 23 & d-5 = 23 & so d = 28

But if we put p as 20 we get a value of m as 56 & d-5=56 & so d=61

Hence it cannot be properly determined so statement 2 alone is not sufficient


Therefore the correct answer is A. Statement 1 alone is sufficient but statement 2 is mot
User avatar
HK12!
Joined: 04 Jul 2023
Last visit: 18 Nov 2025
Posts: 27
Own Kudos:
10
 [1]
Given Kudos: 18
Location: India
Concentration: Entrepreneurship, Sustainability
GMAT 1: 370 Q31 V12
GPA: 4
WE:Marketing (Other)
Products:
GMAT 1: 370 Q31 V12
Posts: 27
Kudos: 10
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Given:
Total=p+0.1p⋅(Total miles−5)
Que: Was trip > 30 miles?
[hr]
(1) Total = 3.3p→
3.3p=p+0.1p⋅x⇒x=23⇒Miles=28
Sufficient

(2) Total = $132 →
132=p+0.1p⋅x ⇒ Miles depends on p
Try values → miles < 30 or > 30 possible
Not sufficient

Therefore, the correct answer is option A.
Bunuel
A moving service charges p dollars for the first 5 miles of any trip plus 0.1*p dollars for each additional mile or fraction of a mile. If p > 30, was a particular trip more than 30 miles long?

(1) The moving service charged a total of 3.3p dollars for the trip.
(2) The moving service charged a total of $132 for the trip.


 


This question was provided by Experts' Global
for the GMAT Olympics 2025

Win over $30,000 in prizes such as Courses, Admissions Consulting, and more

 

User avatar
harshnaicker
Joined: 13 May 2024
Last visit: 25 Sep 2025
Posts: 84
Own Kudos:
60
 [1]
Given Kudos: 35
Posts: 84
Kudos: 60
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Equation of charge: p+ (d-5)*0.1*p
Given that p > 30, is d > 30 miles ?

Statement 1: p+ (d-5)*0.1*p = 3.3p
This will give d= 28.

Statement 1 is SUFFICIENT.

Statement 2: Using this, for some values of P D will be > 30 and for some it will be less than 30. NOT SUFFICIENT.

Answer is A.
Bunuel
A moving service charges p dollars for the first 5 miles of any trip plus 0.1*p dollars for each additional mile or fraction of a mile. If p > 30, was a particular trip more than 30 miles long?

(1) The moving service charged a total of 3.3p dollars for the trip.
(2) The moving service charged a total of $132 for the trip.


 


This question was provided by Experts' Global
for the GMAT Olympics 2025

Win over $30,000 in prizes such as Courses, Admissions Consulting, and more

 

User avatar
ODST117
Joined: 15 Aug 2024
Last visit: 29 Oct 2025
Posts: 173
Own Kudos:
85
 [1]
Given Kudos: 149
Posts: 173
Kudos: 85
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Statement 1 -> The moving service charged a total of \(3.3p\) dollars for the trip.

The charge for every mile or a fraction of a mile after \(5\) miles is \(3.3p-p = 2.3p\)
Number of miles travelled in excess of \(5\) miles \(= 2.3p/0.1p = 23\) miles
\(23+5 = 28\) miles.
This is less than \(30\). This gives us a definite answer. Statement is sufficient.

Statement 2 -> The moving service charged a total of $\(132\) for the trip.

We know \(p>30\) but if could just be \(132\). If it's \(132\), they travelled \(5\) miles. If \(p ~ 30\), they did more than \(30\) miles. This statement is giving us two different answers. Not sufficient.

Answer - A
User avatar
RedYellow
Joined: 28 Jun 2025
Last visit: 09 Nov 2025
Posts: 80
Own Kudos:
74
 [1]
Posts: 80
Kudos: 74
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
(1)
3.3p = p + (miles-5) * 0.1p = (0.5 + 0.1*miles)*p
3.3 = 0.5 + 0.1*miles
miles = 28

trip is more than 27 and less than or equal to 28. So trip isn't more than 30 miles long.

Sufficient

(2)
132=(0.5 + 0.1*miles)*p

Checking values:
miles=28 and p=40 -> no
miles=35 and p=33 -> yes

Insufficient

Correct answer is A
User avatar
Lemniscate
Joined: 28 Jun 2025
Last visit: 09 Nov 2025
Posts: 80
Own Kudos:
72
 [1]
Posts: 80
Kudos: 72
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
(1)
If the trip would be slighly more than 30 miles until equal to 31 miles the cost would be p+(31-5)*0.1*p=3.6*p
It costs 3.3*p, which is less than 3.6*p, so the distance is 30 or less miles.

Statement (1) alone is sufficient.

(2)
p+(d-5)*0.1*p=132
p+0.1dp-0.5p=132
0.5p + 0.1dp=132
5p + dp = 1320
(5+d)*p = 1320

p is > 30, so 5+d is < 44, so d < 39

Depending of the value of p, d can be more than 30 or not.

Statement (2) alone is insufficient.

Answer A
   1   2   3   4   5   
Moderators:
Math Expert
105355 posts
496 posts