Last visit was: 13 Dec 2024, 20:41 It is currently 13 Dec 2024, 20:41
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 13 Dec 2024
Posts: 97,874
Own Kudos:
685,638
 []
Given Kudos: 88,269
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,874
Kudos: 685,638
 []
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
User avatar
unraveled
Joined: 07 Mar 2019
Last visit: 13 Dec 2024
Posts: 2,741
Own Kudos:
2,010
 []
Given Kudos: 764
Location: India
WE:Sales (Energy)
Posts: 2,741
Kudos: 2,010
 []
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
freedom128
Joined: 30 Sep 2017
Last visit: 01 Oct 2020
Posts: 943
Own Kudos:
1,302
 []
Given Kudos: 402
GMAT 1: 720 Q49 V40
GPA: 3.8
Products:
GMAT 1: 720 Q49 V40
Posts: 943
Kudos: 1,302
 []
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
eakabuah
User avatar
Retired Moderator
Joined: 18 May 2019
Last visit: 15 Jun 2022
Posts: 782
Own Kudos:
1,078
 []
Given Kudos: 101
Posts: 782
Kudos: 1,078
 []
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Given that A, B, and C are three positive integers.
We are to determine if A+B+C = an even number.
There two ways that this is possible. If all three numbers are even or if only one is even.

Statement 1: A - C - B is even
This is sufficient since statement 1 is only possible if one of the three integers is even or all the integers are even. And we know that A+B+C can only be even if all three numbers or if one of the integers is even. Statement 1 implies one of the three numbers is even hence sufficient.

Statement 2: (A-C)/B is odd
This is also sufficient. This because if both A and C are even, A-C is even, and to get an odd number, then B must also be even, since an even number can be an odd multiple and dividing by an appropriate even number will lead to an odd number. The converse, on the other hand, is not true. An odd number cannot be an even multiple. Secondly, When either A or C is odd, A-C will be odd, hence the only way to get (A-C)/B to be odd is for B to be odd, implying we will get one even number which is sufficient to conclude that A+B+C is even.
When both A and C are odd, then A-C is even, and as stated earlier, we can only get (A-C)/B to be odd if B is odd. So we end up with one even number and two odd numbers and A+B+B is even.

The answer is therefore D.
User avatar
GMATGuruNY
Joined: 04 Aug 2010
Last visit: 13 Dec 2024
Posts: 1,336
Own Kudos:
3,411
 []
Given Kudos: 9
Schools:Dartmouth College
Expert reply
Posts: 1,336
Kudos: 3,411
 []
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
If A, B and C are integers, is A + B + C even?

(1) A - C - B is even

(2) (A - C)/B is odd.

Statement 1:
Let A-C-B = 0, with the result that A = B+C.
If A=B+C=odd, then A + (B+C) = ODD + ODD = EVEN.
If A=B+C=even, then A + (B+C) = EVEN + EVEN = EVEN.
In each case, the answer to the question stem is YES.
SUFFICIENT.

Statement 2:
Let (A - C)/B = 1, with the result that A-C = B and A = B+C.
Same equation as that yielded by Statement 1.
Since Statement 1 is sufficient, Statement 2 must also be SUFFICIENT.

User avatar
exc4libur
Joined: 24 Nov 2016
Last visit: 22 Mar 2022
Posts: 1,710
Own Kudos:
Given Kudos: 607
Location: United States
Posts: 1,710
Kudos: 1,394
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Quote:
If A, B and C are integers, is A + B + C even?

(1) A - C - B is even

(2) (A - C)/B is odd

odd+-even=odd
odd+-odd=even
even+-even=even

1. o+o+o=e+o=o
2. e+e+o=e+o=o
3. e+e+e=e+e=e
4. o+o+e=e+e=e

(1) A - C - B is even sufic

a-c-b=even; case 3, and 4 fit, both give an even sum.

(2) (A - C)/B is odd sufic

e/e=[odd, even, proper fraction, undefined]
o/o=[odd, proper fraction]
e/o=[even, proper fraction]
o/e=[undefined, proper fraction]

a-c/b=odd;
b=o: a-c=odd=even-odd; a,b,c=e+o+o=even.
b=e: a-c=even=even-even or odd-odd; a,b,c=e+e+e=even, and e+o+o=even.

Ans (D)
User avatar
lacktutor
Joined: 25 Jul 2018
Last visit: 23 Oct 2023
Posts: 663
Own Kudos:
1,221
 []
Given Kudos: 69
Posts: 663
Kudos: 1,221
 []
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
If A, B and C are integers, is A + B + C even?

(Statement1) A - C - B is even
Let's say that A - C - B=2k.
A=2k+B+C --> A + B + C= 2k+B+C+ B+C= 2k+2B+2C= 2(k+B+C) -EVEN (Always YES)

Sufficient

(Statement2) \(\frac{(A - C)}{B}\) is odd
Let's say that \(\frac{(A - C)}{B}= 2k+1\)

A= B*(2k+1)+ C

--> A + B + C =B*(2k+1)+ C+ B+C= B*(2k+1+1) + 2C= B*(2k+2)+2C= 2B*(k+1)+ 2C -EVEN (Always YES)
Sufficient

The answer is D.
User avatar
Archit3110
User avatar
GMAT Club Legend
Joined: 18 Aug 2017
Last visit: 13 Dec 2024
Posts: 8,118
Own Kudos:
4,499
 []
Given Kudos: 243
Status:You learn more from failure than from success.
Location: India
Concentration: Sustainability, Marketing
GMAT Focus 1: 545 Q79 V79 DI73
GPA: 4
WE:Marketing (Energy)
Products:
GMAT Focus 1: 545 Q79 V79 DI73
Posts: 8,118
Kudos: 4,499
 []
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
a+b+c ; even ; e+e+e or o+o+e
#1
A - C - B is even
e-e-e or e-o-o
sufficient
#2
(A - C)/B is odd
e-e/e = Yes
(e-o)/o= yes
(o-o)/e = yes

we are getting values in e+e+e or o+o+e
sufficient
IMO D


If A, B and C are integers, is A + B + C even?

(1) A - C - B is even

(2) (A - C)/B is odd
Moderator:
Math Expert
97874 posts